These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 11707287)
1. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287 [TBL] [Abstract][Full Text] [Related]
2. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
3. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L; Chafai L; Bailleul B Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542 [TBL] [Abstract][Full Text] [Related]
4. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. Guglielmi G; Lavaud J; Rousseau B; Etienne AL; Houmard J; Ruban AV FEBS J; 2005 Sep; 272(17):4339-48. PubMed ID: 16128804 [TBL] [Abstract][Full Text] [Related]
5. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
6. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
7. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Beer A; Gundermann K; Beckmann J; Büchel C Biochemistry; 2006 Oct; 45(43):13046-53. PubMed ID: 17059221 [TBL] [Abstract][Full Text] [Related]
8. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum. Schaller-Laudel S; Volke D; Redlich M; Kansy M; Hoffmann R; Wilhelm C; Goss R Plant Physiol Biochem; 2015 Nov; 96():364-76. PubMed ID: 26368016 [TBL] [Abstract][Full Text] [Related]
9. The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress. Kuczynska P; Jemiola-Rzeminska M; Nowicka B; Jakubowska A; Strzalka W; Burda K; Strzalka K Plant Physiol Biochem; 2020 May; 152():125-137. PubMed ID: 32416342 [TBL] [Abstract][Full Text] [Related]
10. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Lepetit B; Sturm S; Rogato A; Gruber A; Sachse M; Falciatore A; Kroth PG; Lavaud J Plant Physiol; 2013 Feb; 161(2):853-65. PubMed ID: 23209128 [TBL] [Abstract][Full Text] [Related]
11. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. Kansy M; Gurowietz A; Wilhelm C; Goss R BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846 [TBL] [Abstract][Full Text] [Related]
12. Isolation and purification of all- Kuczynska P; Jemiola-Rzeminska M J Appl Phycol; 2017; 29(1):79-87. PubMed ID: 28344388 [TBL] [Abstract][Full Text] [Related]
13. Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum. Mewes H; Richter M Plant Physiol; 2002 Nov; 130(3):1527-35. PubMed ID: 12428017 [TBL] [Abstract][Full Text] [Related]
14. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333 [TBL] [Abstract][Full Text] [Related]
15. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
16. Græsholt C; Brembu T; Volpe C; Bartosova Z; Serif M; Winge P; Nymark M Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667802 [TBL] [Abstract][Full Text] [Related]
17. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. Bojko M; Olchawa-Pajor M; Goss R; Schaller-Laudel S; Strzałka K; Latowski D Plant Cell Environ; 2019 Apr; 42(4):1270-1286. PubMed ID: 30362127 [TBL] [Abstract][Full Text] [Related]
18. The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Gundermann K; Büchel C Photosynth Res; 2008; 95(2-3):229-35. PubMed ID: 17912602 [TBL] [Abstract][Full Text] [Related]
19. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Cruz S; Goss R; Wilhelm C; Leegood R; Horton P; Jakob T J Exp Bot; 2011 Jan; 62(2):509-19. PubMed ID: 20876335 [TBL] [Abstract][Full Text] [Related]
20. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum. Buck JM; Kroth PG; Lepetit B Plant J; 2021 Dec; 108(6):1721-1734. PubMed ID: 34651379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]