These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 11707317)
61. Nitric oxide relaxes rat tail artery smooth muscle by cyclic GMP-independent decrease in calcium sensitivity of myofilaments. Soloviev A; Lehen'kyi V; Zelensky S; Hellstrand P Cell Calcium; 2004 Aug; 36(2):165-73. PubMed ID: 15193864 [TBL] [Abstract][Full Text] [Related]
62. Resting load and modulation of the myofilament Ca2+ sensitivity in rabbit cerebral arteries. Chen X; Miyagi Y; Nishimura J; Kobayashi S; Fukui M; Kanaide H J Cereb Blood Flow Metab; 1997 Feb; 17(2):236-40. PubMed ID: 9040505 [TBL] [Abstract][Full Text] [Related]
63. The cyclic GMP-mediated calcium release pathway in sea urchin eggs is not required for the rise in calcium during fertilization. Lee SJ; Christenson L; Martin T; Shen SS Dev Biol; 1996 Nov; 180(1):324-35. PubMed ID: 8948594 [TBL] [Abstract][Full Text] [Related]
64. Effects of BKCa channels on the reduction of cytosolic Ca2+ in cGMP-induced relaxation of guinea-pig trachea. Mikawa K; Kume H; Takagi K Clin Exp Pharmacol Physiol; 1997 Feb; 24(2):175-81. PubMed ID: 9075593 [TBL] [Abstract][Full Text] [Related]
65. Inhibition of proliferation, but not of Ca2+ mobilization, by cyclic AMP and GMP in rabbit aortic smooth-muscle cells. Assender JW; Southgate KM; Hallett MB; Newby AC Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):527-32. PubMed ID: 1281407 [TBL] [Abstract][Full Text] [Related]
66. U73122 blocked the cGMP-induced calcium release in sea urchin eggs. Lee SJ; Madden PJ; Shen SS Exp Cell Res; 1998 Jul; 242(1):328-40. PubMed ID: 9665830 [TBL] [Abstract][Full Text] [Related]
67. Modulation of agonist-induced calcium mobilisation in bovine aortic endothelial cells by phorbol myristate acetate and cyclic AMP but not cyclic GMP. Buchan KW; Martin W Br J Pharmacol; 1991 Oct; 104(2):361-6. PubMed ID: 1665733 [TBL] [Abstract][Full Text] [Related]
68. Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes. Su J; Scholz PM; Weiss HR Exp Biol Med (Maywood); 2005 Apr; 230(4):242-50. PubMed ID: 15792945 [TBL] [Abstract][Full Text] [Related]
69. Interaction between cyclic GMP protein kinase and cyclic AMP may be diminished in stunned cardiac myocytes. Yan L; Patel KN; Zhang Q; Scholz PM; Weiss HR Eur J Pharmacol; 2001 Aug; 426(1-2):11-9. PubMed ID: 11525765 [TBL] [Abstract][Full Text] [Related]
71. Effect of four cGMP analogues with different mechanisms of action on hormone release by porcine ovarian granulosa cells in vitro. Sirotkin AV; Makarevich AV; Genieser HG; Kotwica J; Hetényi L Exp Clin Endocrinol Diabetes; 2000; 108(3):214-9. PubMed ID: 10926319 [TBL] [Abstract][Full Text] [Related]
72. Platelet-activating factor modulates activity of cyclic nucleotides in fetal ovine pulmonary vascular smooth muscle. Ibe BO; Ameer A; Portugal AM; Renteria L; Raj JU J Pharmacol Exp Ther; 2007 Feb; 320(2):728-37. PubMed ID: 17085546 [TBL] [Abstract][Full Text] [Related]
73. Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Butt E; Nolte C; Schulz S; Beltman J; Beavo JA; Jastorff B; Walter U Biochem Pharmacol; 1992 Jun; 43(12):2591-600. PubMed ID: 1321624 [TBL] [Abstract][Full Text] [Related]
74. 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats. MacLean MR; Sweeney G; Baird M; McCulloch KM; Houslay M; Morecroft I Br J Pharmacol; 1996 Nov; 119(5):917-30. PubMed ID: 8922741 [TBL] [Abstract][Full Text] [Related]
75. Endothelium-dependent relaxation to hydrogen peroxide in canine basilar artery: a potential new cerebral dilator mechanism. Yang ZW; Zhang A; Altura BT; Altura BM Brain Res Bull; 1998 Oct; 47(3):257-63. PubMed ID: 9865858 [TBL] [Abstract][Full Text] [Related]
76. Effects of cAMP and cGMP on L-type calcium channel currents in rat mesenteric artery cells. Taguchi K; Ueda M; Kubo T Jpn J Pharmacol; 1997 Jun; 74(2):179-86. PubMed ID: 9243326 [TBL] [Abstract][Full Text] [Related]
77. Role of anions in nitric oxide-induced short-circuit current increase in isolated porcine ciliary processes. Wu R; Yao K; Flammer J; Haefliger IO Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):3213-22. PubMed ID: 15326143 [TBL] [Abstract][Full Text] [Related]
78. Alteration by lipopolysaccharide of the relationship between intracellular calcium levels and contraction in rat mesenteric artery. Martínez MC; Muller B; Stoclet JC; Andriantsitohaina R Br J Pharmacol; 1996 Jul; 118(5):1218-22. PubMed ID: 8818346 [TBL] [Abstract][Full Text] [Related]
79. Mechanisms of acetylcholine-induced vasorelaxation in high K+-stimulated rabbit renal arteries. Kwon SC J Vet Med Sci; 2001 Jan; 63(1):41-4. PubMed ID: 11217061 [TBL] [Abstract][Full Text] [Related]
80. Nitroglycerine- and isoprenaline-induced vasodilatation: assessment from the actions of cyclic nucleotides. Itoh T; Kanmura Y; Kuriyama H; Sasaguri T Br J Pharmacol; 1985 Feb; 84(2):393-406. PubMed ID: 2983811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]