BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 11707576)

  • 1. Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at the apical membrane of airway epithelial cells.
    Huang P; Lazarowski ER; Tarran R; Milgram SL; Boucher RC; Stutts MJ
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14120-5. PubMed ID: 11707576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia.
    Li Y; Wang W; Parker W; Clancy JP
    Am J Respir Cell Mol Biol; 2006 May; 34(5):600-8. PubMed ID: 16399952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purinergic signaling underlies CFTR control of human airway epithelial cell volume.
    Braunstein GM; Zsembery A; Tucker TA; Schwiebert EM
    J Cyst Fibros; 2004 Jun; 3(2):99-117. PubMed ID: 15463893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures.
    Namkung W; Finkbeiner WE; Verkman AS
    Mol Biol Cell; 2010 Aug; 21(15):2639-48. PubMed ID: 20554763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apical adenosine regulates basolateral Ca2+-activated potassium channels in human airway Calu-3 epithelial cells.
    Wang D; Sun Y; Zhang W; Huang P
    Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1443-53. PubMed ID: 18385283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interaction of CFTR and ENaC in sweat glands.
    Reddy MM; Quinton PM
    Pflugers Arch; 2003 Jan; 445(4):499-503. PubMed ID: 12548396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apical heterotrimeric g-proteins activate CFTR in the native sweat duct.
    Reddy MM; Sun D; Quinton PM
    J Membr Biol; 2001 Jan; 179(1):51-61. PubMed ID: 11155209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia.
    Denning GM; Ostedgaard LS; Cheng SH; Smith AE; Welsh MJ
    J Clin Invest; 1992 Jan; 89(1):339-49. PubMed ID: 1370301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine receptors, cystic fibrosis, and airway hydration.
    Com G; Clancy JP
    Handb Exp Pharmacol; 2009; (193):363-81. PubMed ID: 19639288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis.
    Higgins G; Buchanan P; Perriere M; Al-Alawi M; Costello RW; Verriere V; McNally P; Harvey BJ; Urbach V
    Am J Respir Cell Mol Biol; 2014 Aug; 51(2):178-90. PubMed ID: 24588705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway.
    Hao Y; Cheung CS; Yip WC; Ko WH
    Cell Physiol Biochem; 2015; 37(1):306-20. PubMed ID: 26316078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients.
    Dray-Charier N; Paul A; Scoazec JY; Veissière D; Mergey M; Capeau J; Soubrane O; Housset C
    Hepatology; 1999 Jun; 29(6):1624-34. PubMed ID: 10347100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR.
    MacVinish LJ; Cope G; Ropenga A; Cuthbert AW
    Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin E₂regulation of cystic fibrosis transmembrane conductance regulator activity and airway surface liquid volume requires gap junctional communication.
    Scheckenbach KE; Losa D; Dudez T; Bacchetta M; O'Grady S; Crespin S; Chanson M
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):74-82. PubMed ID: 20167933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.
    Watson MJ; Lee SL; Marklew AJ; Gilmore RC; Gentzsch M; Sassano MF; Gray MA; Tarran R
    Sci Rep; 2016 Jun; 6():27390. PubMed ID: 27278076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide inhibits cAMP-dependent CFTR trafficking in intestinal epithelial cells.
    Skinn AC; MacNaughton WK
    Am J Physiol Gastrointest Liver Physiol; 2005 Oct; 289(4):G739-44. PubMed ID: 15994425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide release provides a mechanism for airway surface liquid homeostasis.
    Lazarowski ER; Tarran R; Grubb BR; van Heusden CA; Okada S; Boucher RC
    J Biol Chem; 2004 Aug; 279(35):36855-64. PubMed ID: 15210701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphodiesterase 4D forms a cAMP diffusion barrier at the apical membrane of the airway epithelium.
    Barnes AP; Livera G; Huang P; Sun C; O'Neal WK; Conti M; Stutts MJ; Milgram SL
    J Biol Chem; 2005 Mar; 280(9):7997-8003. PubMed ID: 15611099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine receptors and phosphodiesterase inhibitors stimulate Cl- secretion in Calu-3 cells.
    Cobb BR; Fan L; Kovacs TE; Sorscher EJ; Clancy JP
    Am J Respir Cell Mol Biol; 2003 Sep; 29(3 Pt 1):410-8. PubMed ID: 12714375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A2 adenosine receptors in Mongolian gerbil middle ear epithelium and their regulation of Cl- secretion.
    Furukawa M; Ikeda K; Oshima T; Suzuki H; Yamaya M; Sasaki H; Takasaka T
    Acta Physiol Scand; 1998 May; 163(1):103-12. PubMed ID: 9648628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.