BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11707580)

  • 1. Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism.
    Komori H; Masui R; Kuramitsu S; Yokoyama S; Shibata T; Inoue Y; Miki K
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13560-5. PubMed ID: 11707580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.
    Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K
    J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27.
    Kato R; Hasegawa K; Hidaka Y; Kuramitsu S; Hoshino T
    J Bacteriol; 1997 Oct; 179(20):6499-503. PubMed ID: 9335302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement.
    Ueda T; Kato A; Ogawa Y; Torizawa T; Kuramitsu S; Iwai S; Terasawa H; Shimada I
    J Biol Chem; 2004 Dec; 279(50):52574-9. PubMed ID: 15465818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses.
    Torizawa T; Ueda T; Kuramitsu S; Hitomi K; Todo T; Iwai S; Morikawa K; Shimada I
    J Biol Chem; 2004 Jul; 279(31):32950-6. PubMed ID: 15169780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus.
    Klar T; Kaiser G; Hennecke U; Carell T; Batschauer A; Essen LO
    Chembiochem; 2006 Nov; 7(11):1798-806. PubMed ID: 17051659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways.
    Scheerer P; Zhang F; Kalms J; von Stetten D; Krauß N; Oberpichler I; Lamparter T
    J Biol Chem; 2015 May; 290(18):11504-14. PubMed ID: 25784552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer.
    Medvedev D; Stuchebrukhov AA
    J Theor Biol; 2001 May; 210(2):237-48. PubMed ID: 11371177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repair by photolyases.
    Kavakli IH; Ozturk N; Gul S
    Adv Protein Chem Struct Biol; 2019; 115():1-19. PubMed ID: 30798929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced DNA repair by DNA photolyase bearing an artificial light-harvesting chromophore.
    Terai Y; Sato R; Matsumura R; Iwai S; Yamamoto J
    Nucleic Acids Res; 2020 Oct; 48(18):10076-10086. PubMed ID: 32901252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases.
    Okafuji A; Biskup T; Hitomi K; Getzoff ED; Kaiser G; Batschauer A; Bacher A; Hidema J; Teranishi M; Yamamoto K; Schleicher E; Weber S
    DNA Repair (Amst); 2010 May; 9(5):495-505. PubMed ID: 20227927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid residue tunes the stability of the fully reduced flavin cofactor and photorepair activity in photolyases.
    Wen B; Xu L; Tang Y; Jiang Z; Ge M; Liu L; Zhu G
    J Biol Chem; 2022 Aug; 298(8):102188. PubMed ID: 35753350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase.
    Weber S
    Biochim Biophys Acta; 2005 Feb; 1707(1):1-23. PubMed ID: 15721603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27.
    Ueda T; Kato A; Kuramitsu S; Terasawa H; Shimada I
    J Biol Chem; 2005 Oct; 280(43):36237-43. PubMed ID: 16118222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Class II DNA photolyase from Arabidopsis thaliana contains FAD as a cofactor.
    Kleiner O; Butenandt J; Carell T; Batschauer A
    Eur J Biochem; 1999 Aug; 264(1):161-7. PubMed ID: 10447684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of DNA photolyase from Escherichia coli.
    Park HW; Kim ST; Sancar A; Deisenhofer J
    Science; 1995 Jun; 268(5219):1866-72. PubMed ID: 7604260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of excitation energy transfer in DNA photolyase.
    Zheng X; Garcia J; Stuchebrukhov AA
    J Phys Chem B; 2008 Jul; 112(29):8724-9. PubMed ID: 18588340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.