These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11707608)

  • 1. A cross-section of the fitness landscape of dihydrofolate reductase.
    Aita T; Iwakura M; Husimi Y
    Protein Eng; 2001 Sep; 14(9):633-8. PubMed ID: 11707608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of a local fitness landscape with a model of the rough Mt. Fuji-type landscape: application to prolyl endopeptidase and thermolysin.
    Aita T; Uchiyama H; Inaoka T; Nakajima M; Kokubo T; Husimi Y
    Biopolymers; 2000 Jul; 54(1):64-79. PubMed ID: 10799982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitness spectrum among random mutants on Mt. Fuji-type fitness landscape.
    Aita T; Husimi Y
    J Theor Biol; 1996 Oct; 182(4):469-85. PubMed ID: 8944894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive walks by the fittest among finite random mutants on a Mt. Fuji-type fitness landscape. II. Effect of small non-additivity.
    Aita T; Husimi Y
    J Math Biol; 2000 Sep; 41(3):207-31. PubMed ID: 11072756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of S65, Q67, I68, and Y69 residues in homotetrameric R67 dihydrofolate reductase.
    Strader MB; Smiley RD; Stinnett LG; VerBerkmoes NC; Howell EE
    Biochemistry; 2001 Sep; 40(38):11344-52. PubMed ID: 11560482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the functional robustness of an enzyme by in vitro evolution.
    Martinez MA; Pezo V; Marlière P; Wain-Hobson S
    EMBO J; 1996 Mar; 15(6):1203-10. PubMed ID: 8635452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical principles predict fitness landscapes of drug resistance.
    Rodrigues JV; Bershtein S; Li A; Lozovsky ER; Hartl DL; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):E1470-8. PubMed ID: 26929328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase.
    Ohmae E; Sasaki Y; Gekko K
    J Biochem; 2001 Sep; 130(3):439-47. PubMed ID: 11530021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological mutation of Escherichia coli dihydrofolate reductase.
    Iwakura M; Takenawa T; Nakamura T
    J Biochem; 1998 Oct; 124(4):769-77. PubMed ID: 9756622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An amino acid substitution in the Babesia bovis dihydrofolate reductase-thymidylate synthase gene is correlated to cross-resistance against pyrimethamine and WR99210.
    Gaffar FR; Wilschut K; Franssen FF; de Vries E
    Mol Biochem Parasitol; 2004 Feb; 133(2):209-19. PubMed ID: 14698433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence perturbation analysis: addressing amino acid indices to elucidate the C-terminal role of Escherichia coli dihydrofolate reductase.
    Takahashi H; Yokota A; Takenawa T; Iwakura M
    J Biochem; 2009 Jun; 145(6):751-62. PubMed ID: 19254927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.
    Ohmae E; Miyashita Y; Tate S; Gekko K; Kitazawa S; Kitahara R; Kuwajima K
    Biochim Biophys Acta; 2013 Dec; 1834(12):2782-94. PubMed ID: 24140567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of point mutation in a flexible loop on the stability and enzymatic function of Escherichia coli dihydrofolate reductase.
    Gekko K; Yamagami K; Kunori Y; Ichihara S; Kodama M; Iwakura M
    J Biochem; 1993 Jan; 113(1):74-80. PubMed ID: 8454578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the roles of conserved arginine-44 of Escherichia coli dihydrofolate reductase in its function and stability by systematic sequence perturbation analysis.
    Yokota A; Takahashi H; Takenawa T; Arai M
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1703-7. PubMed ID: 20043879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementation between dimeric mutants as a probe of dimer-dimer interactions in tetrameric dihydrofolate reductase encoded by R67 plasmid of E. coli.
    Dam J; Rose T; Goldberg ME; Blondel A
    J Mol Biol; 2000 Sep; 302(1):235-50. PubMed ID: 10964572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA sequence of a plasmid-encoded dihydrofolate reductase.
    Swift G; McCarthy BJ; Heffron F
    Mol Gen Genet; 1981; 181(4):441-7. PubMed ID: 7022127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.