BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11707927)

  • 21. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.
    Yamamoto A; Kumakura S; Uchida M; Barrett JC; Tsutsui T
    Int J Cancer; 2003 Sep; 106(3):301-9. PubMed ID: 12845665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression.
    Sviderskaya EV; Gray-Schopfer VC; Hill SP; Smit NP; Evans-Whipp TJ; Bond J; Hill L; Bataille V; Peters G; Kipling D; Wynford-Thomas D; Bennett DC
    J Natl Cancer Inst; 2003 May; 95(10):723-32. PubMed ID: 12759390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening.
    Suzuki K; Mori I; Nakayama Y; Miyakoda M; Kodama S; Watanabe M
    Radiat Res; 2001 Jan; 155(1 Pt 2):248-253. PubMed ID: 11121242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple facets of p53 in senescence induction and maintenance.
    Johmura Y; Nakanishi M
    Cancer Sci; 2016 Nov; 107(11):1550-1555. PubMed ID: 27560979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interferon-gamma induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells.
    Kim KS; Kang KW; Seu YB; Baek SH; Kim JR
    Mech Ageing Dev; 2009 Mar; 130(3):179-88. PubMed ID: 19071156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immortalization of bovine capillary endothelial cells by hTERT alone involves inactivation of endogenous p16INK4A/pRb.
    Veitonmäki N; Fuxe J; Hultdin M; Roos G; Pettersson RF; Cao Y
    FASEB J; 2003 Apr; 17(6):764-6. PubMed ID: 12586745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversal of human cellular senescence: roles of the p53 and p16 pathways.
    Beauséjour CM; Krtolica A; Galimi F; Narita M; Lowe SW; Yaswen P; Campisi J
    EMBO J; 2003 Aug; 22(16):4212-22. PubMed ID: 12912919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life-span of human diploid fibroblasts. A review.
    Vaziri H
    Biochemistry (Mosc); 1997 Nov; 62(11):1306-10. PubMed ID: 9467855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes.
    Haddad MM; Xu W; Schwahn DJ; Liao F; Medrano EE
    Exp Cell Res; 1999 Dec; 253(2):561-72. PubMed ID: 10585280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B and p53 tumour-suppressor genes drive induced senescence bypass in normal diploid mammalian cells.
    Yasaei H; Gilham E; Pickles JC; Roberts TP; O'Donovan M; Newbold RF
    Oncogene; 2013 Jan; 32(2):171-9. PubMed ID: 22410783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1.
    Bandyopadhyay D; Medrano EE
    Ann N Y Acad Sci; 2000 Jun; 908():71-84. PubMed ID: 10911949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replicative senescence in human uroepithelial cells.
    Puthenveettil JA; Burger MS; Reznikoff CA
    Adv Exp Med Biol; 1999; 462():83-91. PubMed ID: 10599415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association of p16(INK4a) and pRb inactivation with immortalization of human cells.
    Tsutsui T; Kumakura S; Yamamoto A; Kanai H; Tamura Y; Kato T; Anpo M; Tahara H; Barrett JC
    Carcinogenesis; 2002 Dec; 23(12):2111-7. PubMed ID: 12507935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers.
    Sarkar S; Jülicher KP; Burger MS; Della Valle V; Larsen CJ; Yeager TR; Grossman TB; Nickells RW; Protzel C; Jarrard DF; Reznikoff CA
    Cancer Res; 2000 Jul; 60(14):3862-71. PubMed ID: 10919661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smurf2 up-regulation activates telomere-dependent senescence.
    Zhang H; Cohen SN
    Genes Dev; 2004 Dec; 18(24):3028-40. PubMed ID: 15574587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human telomeres maintain their overhang length at senescence.
    Chai W; Shay JW; Wright WE
    Mol Cell Biol; 2005 Mar; 25(6):2158-68. PubMed ID: 15743814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ochratoxin A induced premature senescence in human renal proximal tubular cells.
    Yang X; Liu S; Huang C; Wang H; Luo Y; Xu W; Huang K
    Toxicology; 2017 May; 382():75-83. PubMed ID: 28286205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses.
    Maehara K; Takahashi K; Saitoh S
    Mol Cell Biol; 2010 May; 30(9):2090-104. PubMed ID: 20160010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replicative senescence revisited.
    Marcotte R; Wang E
    J Gerontol A Biol Sci Med Sci; 2002 Jul; 57(7):B257-69. PubMed ID: 12084796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of cellular senescence and immortalization of human cells.
    Kiyono T
    Expert Opin Ther Targets; 2007 Dec; 11(12):1623-37. PubMed ID: 18020982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.