BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11708058)

  • 1. Electrochemical behavior of catechol and 3,4-dihydroxytoluene in acetonitrile at a platinum-disk electrode modified with a tyrosinase containing polyacrylamide film.
    Miyasaka T; Takahashi Y; Nakamura T
    Anal Sci; 2001 Sep; 17(9):1055-8. PubMed ID: 11708058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the nanogold-4,4'-bis(methanethiol)biphenyl modified gold electrode to the determination of tyrosinase-catechol reaction kinetics in acetonitrile.
    Nakamura T; Ren J; Zhu KM; Kawara S; Jin B
    Anal Sci; 2006 Sep; 22(9):1261-4. PubMed ID: 16966822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disposable, screen-printed electrode for the amperometric determination of azide based on the immobilization with catalase or tyrosinase.
    Cui Y; Barford JP; Renneberg R
    Anal Sci; 2006 Oct; 22(10):1279-81. PubMed ID: 17038762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN; Lee JE; Lee HJ
    Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol.
    Tang L; Zhou Y; Zeng G; Li Z; Liu Y; Zhang Y; Chen G; Yang G; Lei X; Wu M
    Analyst; 2013 Jun; 138(12):3552-60. PubMed ID: 23671910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods.
    Biegunski AT; Michota A; Bukowska J; Jackowska K
    Bioelectrochemistry; 2006 Sep; 69(1):41-8. PubMed ID: 16423566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes.
    Cosnier S; Szunerits S; Marks RS; Lellouche JP; Perie K
    J Biochem Biophys Methods; 2001 Dec; 50(1):65-77. PubMed ID: 11714513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.
    Singh RP
    Analyst; 2011 Mar; 136(6):1216-21. PubMed ID: 21240422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing of enzyme reactions by the biocatalyst-induced association or dissociation of redox labels linked to monolayer-functionalized electrodes.
    Li D; Gill R; Freeman R; Willner I
    Chem Commun (Camb); 2006 Dec; (48):5027-9. PubMed ID: 17146516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of tyrosinase and alcohol oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole.
    Yildiz HB; Sahmetlioglu E; Boyukbayram AE; Toppare L; Yagci Y
    Int J Biol Macromol; 2007 Aug; 41(3):332-7. PubMed ID: 17555810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amperometric quantification of polar organic solvents based on a tyrosinase biosensor.
    Zhang J; Wang B; Xu B; Cheng G; Dong S
    Anal Chem; 2000 Aug; 72(15):3455-60. PubMed ID: 10952527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathodic reduction of coenzyme Q10 on glassy carbon electrode in acetic acid-acetonitrile solutions.
    Michalkiewicz S
    Bioelectrochemistry; 2007 May; 70(2):495-500. PubMed ID: 17046336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors.
    Rodríguez-Sevilla E; Ramírez-Silva MT; Romero-Romo M; Ibarra-Escutia P; Palomar-Pardavé M
    Sensors (Basel); 2014 Aug; 14(8):14423-39. PubMed ID: 25111237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode.
    Wang Y; Zhai F; Hasebe Y; Jia H; Zhang Z
    Bioelectrochemistry; 2018 Aug; 122():174-182. PubMed ID: 29656242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Electrochemical Genosensor Based on Banana and Nano-Gold Modified Electrode Using Tyrosinase Enzyme as Indicator.
    Asghary M; Raoof JB; Hamidi-Asl E; Ojani R
    J Nanosci Nanotechnol; 2015 May; 15(5):3394-404. PubMed ID: 26504957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-rate membrane supported aqueous-phase enzymatic conversion in organic solvent.
    Yokoi H; Belfort G
    Bioseparation; 1994 Jun; 4(3):213-20. PubMed ID: 7765181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilisation of tyrosinase by reversed micelles for bioelectrocatalysis in dry organic media.
    Shipovskov S; Ferapontova E; Ruzgas T; Levashov A
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):119-24. PubMed ID: 12595080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electron transfer enhancement of covalently bound tyrosinase to glassy carbon via Woodward's reagent K.
    Faridnouri H; Ghourchian H; Hashemnia S
    Bioelectrochemistry; 2011 Aug; 82(1):1-9. PubMed ID: 21715233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water.
    Campanhã Vicentini F; Garcia LL; Figueiredo-Filho LC; Janegitz BC; Fatibello-Filho O
    Enzyme Microb Technol; 2016 Mar; 84():17-23. PubMed ID: 26827770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.
    Sethuraman V; Muthuraja P; Anandha Raj J; Manisankar P
    Biosens Bioelectron; 2016 Oct; 84():112-9. PubMed ID: 26751827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.