These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11708447)

  • 21. Quantifying ground water recharge at multiple scales using PRMS and GIS.
    Cherkauer DS
    Ground Water; 2004; 42(1):97-110. PubMed ID: 14763622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Update on the use of the RORA program for recharge estimation.
    Rutledge AT
    Ground Water; 2007; 45(3):374-82. PubMed ID: 17470127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Movement of water infiltrated from a recharge basin to wells.
    O'Leary DR; Izbicki JA; Moran JE; Meeth T; Nakagawa B; Metzger L; Bonds C; Singleton MJ
    Ground Water; 2012; 50(2):242-55. PubMed ID: 21740423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ground water budget analysis and cross-formational leakage in an arid basin.
    Hutchison WR; Hibbs BJ
    Ground Water; 2008; 46(3):384-95. PubMed ID: 18384598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PRO-GRADE: GIS toolkits for ground water recharge and discharge estimation.
    Lin YF; Wang J; Valocchi AJ
    Ground Water; 2009; 47(1):122-8. PubMed ID: 18823400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.
    Monirul Islam M; Kanungoe P
    Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A regression model to estimate regional ground water recharge.
    Lorenz DL; Delin GN
    Ground Water; 2007; 45(2):196-208. PubMed ID: 17335484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vadose zone-attenuated artificial recharge for input to a ground water model.
    Nichols WE; Wurstner SK; Eslinger PW
    Ground Water; 2007; 45(4):491-8. PubMed ID: 17600580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of artificial groundwater recharge potential through estimation of permeability values from infiltration and aquifer tests in unconsolidated alluvial formations in coastal areas.
    Masoud MHZ; Basahi JM; Zaidi FK
    Environ Monit Assess; 2018 Dec; 191(1):31. PubMed ID: 30591977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rapid screening-level method to optimize location of infiltration ponds.
    Fennemore GG; Davis A; Goss L; Warrick AW
    Ground Water; 2001; 39(2):230-8. PubMed ID: 11286070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.
    Moya CE; Raiber M; Taulis M; Cox ME
    Sci Total Environ; 2015 Mar; 508():411-26. PubMed ID: 25497681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interbasin underflow between closed Altiplano basins in Chile.
    Montgomery EL; Rosko MJ; Castro SO; Keller BR; Bevacqua PS
    Ground Water; 2003; 41(4):523-31. PubMed ID: 12873015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach.
    Harrington GA; Cook PG; Herczeg AL
    Ground Water; 2002; 40(5):518-27. PubMed ID: 12236265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz Basin in Turkey.
    Tonkul S; Baba A; Şimşek C; Durukan S; Demirkesen AC; Tayfur G
    Environ Monit Assess; 2019 Sep; 191(10):610. PubMed ID: 31486893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.
    Andrews CB; Neville CJ
    Ground Water; 2003; 41(2):219-26. PubMed ID: 12656288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat as a ground water tracer.
    Anderson MP
    Ground Water; 2005; 43(6):951-68. PubMed ID: 16324018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the interpretation of recharge estimates from steady-state model calibrations.
    Anderson WP; Evans DG
    Ground Water; 2007; 45(4):499-505. PubMed ID: 17600581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.
    Meredith K; Cendón DI; Pigois JP; Hollins S; Jacobsen G
    Sci Total Environ; 2012 Jan; 414():456-69. PubMed ID: 22104381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia).
    Hamza MH; Added A; Rodríguez R; Abdeljaoued S; Ben Mammou A
    J Environ Manage; 2007 Jul; 84(1):12-9. PubMed ID: 16863677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.