BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11709175)

  • 21. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin.
    Libiad M; Motl N; Akey DL; Sakamoto N; Fearon ER; Smith JL; Banerjee R
    J Biol Chem; 2018 Feb; 293(8):2675-2686. PubMed ID: 29348167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase.
    Wolfe MD; Ahmed F; Lacourciere GM; Lauhon CT; Stadtman TC; Larson TJ
    J Biol Chem; 2004 Jan; 279(3):1801-9. PubMed ID: 14594807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis.
    Nagahara N; Okazaki T; Nishino T
    J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution NMR structure and functional analysis of the integral membrane protein YgaP from Escherichia coli.
    Eichmann C; Tzitzilonis C; Bordignon E; Maslennikov I; Choe S; Riek R
    J Biol Chem; 2014 Aug; 289(34):23482-503. PubMed ID: 24958726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese.
    Li H; Yang F; Kang X; Xia B; Jin C
    Biochemistry; 2008 Apr; 47(15):4377-85. PubMed ID: 18355042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8).
    Avvakumov GV; Walker JR; Xue S; Finerty PJ; Mackenzie F; Newman EM; Dhe-Paganon S
    J Biol Chem; 2006 Dec; 281(49):38061-70. PubMed ID: 17035239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP.
    Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F
    Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of Saccharomyces cerevisiae Ygr203w, a homolog of single-domain rhodanese and Cdc25 phosphatase catalytic domain.
    Yeo HK; Lee JY
    Proteins; 2009 Aug; 76(2):520-4. PubMed ID: 19382206
    [No Abstract]   [Full Text] [Related]  

  • 29. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major.
    Mukhopadhyay R; Bisacchi D; Zhou Y; Armirotti A; Bordo D
    J Mol Biol; 2009 Mar; 386(5):1229-39. PubMed ID: 18687336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that elongation of the catalytic loop of the Azotobacter vinelandii rhodanese changed selectivity from sulfur- to phosphate-containing substrates.
    Forlani F; Carpen A; Pagani S
    Protein Eng; 2003 Jul; 16(7):515-9. PubMed ID: 12915729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry.
    Matthies A; Nimtz M; Leimkühler S
    Biochemistry; 2005 May; 44(21):7912-20. PubMed ID: 15910006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallization and preliminary crystallographic investigations of rhodanese from Azotobacter vinelandii.
    Bordo D; Colnaghi R; Deriu D; Carpen A; Storici P; Pagani S; Bolognesi M
    Acta Crystallogr D Biol Crystallogr; 1999 Aug; 55(Pt 8):1471-3. PubMed ID: 10417419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed mutagenesis of the active site loop of the rhodanese-like domain of the human molybdopterin synthase sulfurase MOCS3. Major differences in substrate specificity between eukaryotic and bacterial homologs.
    Krepinsky K; Leimkühler S
    FEBS J; 2007 Jun; 274(11):2778-87. PubMed ID: 17459099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The N-terminal rhodanese domain from Azotobacter vinelandii has a stable and folded structure independently of the C-terminal domain.
    Melino S; Cicero DO; Forlani F; Pagani S; Paci M
    FEBS Lett; 2004 Nov; 577(3):403-8. PubMed ID: 15556618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MdRDH1, a HSP67B2-like rhodanese homologue plays a positive role in maintaining redox balance in Musca domestica.
    Tang T; Sun H; Li Y; Chen P; Liu F
    Mol Immunol; 2019 Mar; 107():115-122. PubMed ID: 30716562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.
    Zeng G; Ye S; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular recognition between Azotobacter vinelandii rhodanese and a sulfur acceptor protein.
    Cereda A; Forlani F; Iametti S; Bernhardt R; Ferranti P; Picariello G; Pagani S; Bonomi F
    Biol Chem; 2003; 384(10-11):1473-81. PubMed ID: 14669990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of the Escherichia coli rhodanese-like protein SseA: contribution of the active-site residue Ser240 to sulfur donor recognition.
    Colnaghi R; Cassinelli G; Drummond M; Forlani F; Pagani S
    FEBS Lett; 2001 Jul; 500(3):153-6. PubMed ID: 11445076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein.
    Eichmann C; Tzitzilonis C; Nakamura T; Kwiatkowski W; Maslennikov I; Choe S; Lipton SA; Riek R
    J Mol Biol; 2016 Sep; 428(19):3737-51. PubMed ID: 27473602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis.
    Nagahara N; Nishino T
    J Biol Chem; 1996 Nov; 271(44):27395-401. PubMed ID: 8910318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.