BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 11709183)

  • 1. Phosphorylation of gamma-tubulin regulates microtubule organization in budding yeast.
    Vogel J; Drapkin B; Oomen J; Beach D; Bloom K; Snyder M
    Dev Cell; 2001 Nov; 1(5):621-31. PubMed ID: 11709183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gamma-Tubulin-like Tub4p of Saccharomyces cerevisiae is associated with the spindle pole body substructures that organize microtubules and is required for mitotic spindle formation.
    Spang A; Geissler S; Grein K; Schiebel E
    J Cell Biol; 1996 Jul; 134(2):429-41. PubMed ID: 8707827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant.
    Machin NA; Lee JM; Barnes G
    Mol Biol Cell; 1995 Sep; 6(9):1241-59. PubMed ID: 8534919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body.
    Pereira G; Knop M; Schiebel E
    Mol Biol Cell; 1998 Apr; 9(4):775-93. PubMed ID: 9529377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The carboxy terminus of Tub4p is required for gamma-tubulin function in budding yeast.
    Vogel J; Snyder M
    J Cell Sci; 2000 Nov; 113 Pt 21():3871-82. PubMed ID: 11034914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Tub4p, a yeast gamma-tubulin-like protein: implications for microtubule-organizing center function.
    Marschall LG; Jeng RL; Mulholland J; Stearns T
    J Cell Biol; 1996 Jul; 134(2):443-54. PubMed ID: 8707828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly divergent gamma-tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae.
    Sobel SG; Snyder M
    J Cell Biol; 1995 Dec; 131(6 Pt 2):1775-88. PubMed ID: 8557744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function.
    Lin TC; Gombos L; Neuner A; Sebastian D; Olsen JV; Hrle A; Benda C; Schiebel E
    PLoS One; 2011 May; 6(5):e19700. PubMed ID: 21573187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel protein complex promoting formation of functional alpha- and gamma-tubulin.
    Geissler S; Siegers K; Schiebel E
    EMBO J; 1998 Feb; 17(4):952-66. PubMed ID: 9463374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spindle pole body component Spc98p interacts with the gamma-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment.
    Geissler S; Pereira G; Spang A; Knop M; Souès S; Kilmartin J; Schiebel E
    EMBO J; 1996 Aug; 15(15):3899-911. PubMed ID: 8670895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin.
    Caron JM; Vega LR; Fleming J; Bishop R; Solomon F
    Mol Biol Cell; 2001 Sep; 12(9):2672-87. PubMed ID: 11553707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIM1 encodes a microtubule-binding protein in yeast.
    Schwartz K; Richards K; Botstein D
    Mol Biol Cell; 1997 Dec; 8(12):2677-91. PubMed ID: 9398684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.
    Podolski M; Mahamdeh M; Howard J
    J Biol Chem; 2014 Oct; 289(41):28087-93. PubMed ID: 25172511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules.
    Saunders W; Hornack D; Lengyel V; Deng C
    J Cell Biol; 1997 Apr; 137(2):417-31. PubMed ID: 9128252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating microtubule properties by modifying their organizing minus ends.
    Usui T; Schiebel E
    Mol Cell; 2001 Nov; 8(5):931-2. PubMed ID: 11741527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast.
    Gupta ML; Bode CJ; Thrower DA; Pearson CG; Suprenant KA; Bloom KS; Himes RH
    Mol Biol Cell; 2002 Aug; 13(8):2919-32. PubMed ID: 12181356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant-lethal alpha-tubulin mutants defective in microtubule depolymerization in yeast.
    Anders KR; Botstein D
    Mol Biol Cell; 2001 Dec; 12(12):3973-86. PubMed ID: 11739794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution and characterization of budding yeast gamma-tubulin complex.
    Vinh DB; Kern JW; Hancock WO; Howard J; Davis TN
    Mol Biol Cell; 2002 Apr; 13(4):1144-57. PubMed ID: 11950928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma-tubulin is required for proper recruitment and assembly of Kar9-Bim1 complexes in budding yeast.
    Cuschieri L; Miller R; Vogel J
    Mol Biol Cell; 2006 Oct; 17(10):4420-34. PubMed ID: 16899509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation.
    Knop M; Schiebel E
    EMBO J; 1998 Jul; 17(14):3952-67. PubMed ID: 9670012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.