These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11709206)

  • 1. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens.
    Hamel RD; Appanna VD
    J Inorg Biochem; 2001 Nov; 87(1-2):1-8. PubMed ID: 11709206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of Pseudomonas fluorescens to Al-citrate: involvement of tricarboxylic acid and glyoxylate cycle enzymes and the influence of phosphate.
    Appanna VD; Hamel R; Mackenzie C; Kumar P; Kalyuzhnyi SV
    Curr Microbiol; 2003 Dec; 47(6):521-7. PubMed ID: 14756538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of isocitrate lyase is an important strategy in the survival of Pseudomonas fluorescens exposed to aluminum.
    Hamel R; Appanna VD; Viswanatha T; Puiseux-Dao S
    Biochem Biophys Res Commun; 2004 May; 317(4):1189-94. PubMed ID: 15094395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolism of aluminum citrate and biosynthesis of oxalic acid in Pseudomonas fluorescens.
    Appanna VD; Hamel RD; Lévasseur R
    Curr Microbiol; 2003 Jul; 47(1):32-9. PubMed ID: 12783190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxalic acid production and aluminum tolerance in Pseudomonas fluorescens.
    Hamel R; Levasseur R; Appanna VD
    J Inorg Biochem; 1999 Aug; 76(2):99-104. PubMed ID: 10612061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.
    Singh R; Lemire J; Mailloux RJ; Chénier D; Hamel R; Appanna VD
    PLoS One; 2009 Oct; 4(10):e7344. PubMed ID: 19809498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aluminum triggers decreased aconitase activity via Fe-S cluster disruption and the overexpression of isocitrate dehydrogenase and isocitrate lyase: a metabolic network mediating cellular survival.
    Middaugh J; Hamel R; Jean-Baptiste G; Beriault R; Chenier D; Appanna VD
    J Biol Chem; 2005 Feb; 280(5):3159-65. PubMed ID: 15548528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in
    Crousilles A; Dolan SK; Brear P; Chirgadze DY; Welch M
    J Biol Chem; 2018 Sep; 293(37):14260-14269. PubMed ID: 30030382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.
    Alhasawi A; Costanzi J; Auger C; Appanna ND; Appanna VD
    J Biotechnol; 2015 Apr; 200():38-43. PubMed ID: 25724118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of glyoxylate shunt dysregulates iron homeostasis in Pseudomonas aeruginosa.
    Ha S; Shin B; Park W
    Microbiology (Reading); 2018 Apr; 164(4):587-599. PubMed ID: 29465342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of the tricarboxylic acid cycle in Ancylostoma ceylanicum and Nippostrongylus brasiliensis.
    Singh SP; Katiyar JC; Srivastava VM
    J Parasitol; 1992 Feb; 78(1):24-9. PubMed ID: 1738065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Central metabolism in Acinetobacter sp. grown on ethanol].
    Pirog TP; Kuz'minskaia IuV
    Mikrobiologiia; 2003; 72(4):459-65. PubMed ID: 14526533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isocitrate dehydrogenase and glyoxylate cycle enzyme activities in Bradyrhizobium japonicum under various growth conditions.
    Green LS; Karr DB; Emerich DW
    Arch Microbiol; 1998 May; 169(5):445-51. PubMed ID: 9560426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris.
    Yoon JJ; Hattori T; Shimada M
    FEMS Microbiol Lett; 2002 Nov; 217(1):9-14. PubMed ID: 12445639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity.
    Mailloux RJ; Lemire J; Kalyuzhnyi S; Appanna V
    Extremophiles; 2008 May; 12(3):451-9. PubMed ID: 18335165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate.
    Rajput MS; Naresh Kumar G; Rajkumar S
    Arch Microbiol; 2013 Feb; 195(2):81-8. PubMed ID: 23124768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Regulation of the glyoxylic cycle: effect of the NADPH/NADP ratio].
    Machado A
    Rev Esp Fisiol; 1982; 38 Suppl():141-6. PubMed ID: 7146569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production.
    Singh R; Beriault R; Middaugh J; Hamel R; Chenier D; Appanna VD; Kalyuzhnyi S
    Extremophiles; 2005 Oct; 9(5):367-73. PubMed ID: 15970995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar synthesis in Leptospira. II. Presence of glyoxylate cycle enzymes.
    Yanagihara Y; Kobayashi S; Mifuchi I
    Microbiol Immunol; 1984; 28(5):529-34. PubMed ID: 6472133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.