BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 11709399)

  • 1. NMDA-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide.
    Li YF; Mayhan WG; Patel KP
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2328-36. PubMed ID: 11709399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity.
    Zhang K; Mayhan WG; Patel KP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R864-72. PubMed ID: 9321861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide.
    Li YF; Wang W; Mayhan WG; Patel KP
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R1035-43. PubMed ID: 16322353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus.
    Li YF; Jackson KL; Stern JE; Rabeler B; Patel KP
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2847-56. PubMed ID: 16877560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA.
    Zhang K; Patel KP
    Am J Physiol; 1998 Sep; 275(3):R728-34. PubMed ID: 9728069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of NMDA NR1 receptors within the paraventricular nucleus of hypothalamus in rats with heart failure.
    Li YF; Cornish KG; Patel KP
    Circ Res; 2003 Nov; 93(10):990-7. PubMed ID: 14576197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of paraventricular nucleus in regulation of sympathetic nerve frequency components.
    Kenney MJ; Weiss ML; Mendes T; Wang Y; Fels RJ
    Am J Physiol Heart Circ Physiol; 2003 May; 284(5):H1710-20. PubMed ID: 12521941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Median preoptic nucleus and subfornical organ drive renal sympathetic nerve activity via a glutamatergic mechanism within the paraventricular nucleus.
    Llewellyn T; Zheng H; Liu X; Xu B; Patel KP
    Am J Physiol Regul Integr Comp Physiol; 2012 Feb; 302(4):R424-32. PubMed ID: 22160544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of spinal N-methyl-D-aspartic acid receptors to control of sympathetic outflow by the paraventricular nucleus.
    Porter JP
    Brain Res Bull; 1993; 32(6):653-60. PubMed ID: 8106130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors.
    Chen QH; Haywood JR; Toney GM
    Hypertension; 2003 Oct; 42(4):725-31. PubMed ID: 12900439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure.
    Zhang K; Li YF; Patel KP
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H995-1004. PubMed ID: 11514264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the paraventricular nucleus in renal excretory responses to acute volume expansion: role of nitric oxide.
    Li YF; Mayhan WG; Patel KP
    Am J Physiol Heart Circ Physiol; 2003 Oct; 285(4):H1738-46. PubMed ID: 12969886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats.
    Lo WC; Lin HC; Ger LP; Tung CS; Tseng CJ
    Hypertension; 1997 Dec; 30(6):1499-503. PubMed ID: 9403573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension.
    Li DP; Pan HL
    Hypertension; 2007 Apr; 49(4):916-25. PubMed ID: 17309953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the cardiovascular effects of L-glutamate microinjection into the hypothalamic paraventricular nucleus of unanesthetized rats.
    Busnardo C; Tavares RF; Corrêa FM
    J Neurosci Res; 2009 Jul; 87(9):2066-77. PubMed ID: 19229989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow.
    Kenney MJ; Weiss ML; Haywood JR
    Acta Physiol Scand; 2003 Jan; 177(1):7-15. PubMed ID: 12492774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Participation of NMDA and kainate receptors of paraventricular nucleus in cardiovascular responses to glutamate receptor agonist.
    Gören MZ; Onat F; Berkman K
    Eur J Pharmacol; 2000 Jan; 388(1):77-84. PubMed ID: 10657549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei.
    Chitravanshi VC; Kawabe K; Sapru HN
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H433-44. PubMed ID: 27402666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central Ang II (Angiotensin II)-Mediated Sympathoexcitation: Role for HIF-1α (Hypoxia-Inducible Factor-1α) Facilitated Glutamatergic Tone in the Paraventricular Nucleus of the Hypothalamus.
    Sharma NM; Haibara AS; Katsurada K; Nandi SS; Liu X; Zheng H; Patel KP
    Hypertension; 2021 Jan; 77(1):147-157. PubMed ID: 33296248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hypothalamic Leptin-Glutamate Interaction in the Regulation of Sympathetic Nerve Activity.
    Zheng H; Liu X; Li Y; Patel KP
    Neural Plast; 2017; 2017():2361675. PubMed ID: 28845307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.