These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11709444)

  • 1. Pulmonary arterial morphometry from microfocal X-ray computed tomography.
    Karau KL; Molthen RC; Dhyani A; Haworth ST; Hanger CC; Roerig DL; Johnson RH; Dawson CA
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2747-56. PubMed ID: 11709444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfocal X-ray CT imaging and pulmonary arterial distensibility in excised rat lungs.
    Karau KL; Johnson RH; Molthen RC; Dhyani AH; Haworth ST; Hanger CC; Roerig DL; Dawson CA
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1447-57. PubMed ID: 11514318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDCT-based quantification of porcine pulmonary arterial morphometry and self-similarity of arterial branching geometry.
    Lee YC; Clark AR; Fuld MK; Haynes S; Divekar AA; Hoffman EA; Tawhai MH
    J Appl Physiol (1985); 2013 May; 114(9):1191-201. PubMed ID: 23449941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Anatomic study and CT angiography with 3D reconstructions of the pulmonary arterial tree].
    Seizeur R; Gérard R; Marion J; Lefèvre C; Nonent M; Forlodou P; Sénécail B
    Morphologie; 2010 Aug; 94(306):45-50. PubMed ID: 20303311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative models of the rat pulmonary arterial tree morphometry applied to hypoxia-induced arterial remodeling.
    Molthen RC; Karau KL; Dawson CA
    J Appl Physiol (1985); 2004 Dec; 97(6):2372-84; discussion 2354. PubMed ID: 15333611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transit time dispersion in the pulmonary arterial tree.
    Clough AV; Haworth ST; Hanger CC; Wang J; Roerig DL; Linehan JH; Dawson CA
    J Appl Physiol (1985); 1998 Aug; 85(2):565-74. PubMed ID: 9688734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in-vivo computed tomography approach for quantifying porcine pulmonary arterial morphometry.
    Lee YC; Clark A; Fuld M; Haynes S; Divekar A; Hoffman E; Tawhai M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5400-3. PubMed ID: 23367150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional visualization and morphometry of small airways from microfocal X-ray computed tomography.
    Sera T; Fujioka H; Yokota H; Makinouchi A; Himeno R; Schroter RC; Tanishita K
    J Biomech; 2003 Nov; 36(11):1587-94. PubMed ID: 14522199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents.
    Counter WB; Wang IQ; Farncombe TH; Labiris NR
    Am J Physiol Lung Cell Mol Physiol; 2013 Jun; 304(12):L831-43. PubMed ID: 23564512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model.
    Burrowes KS; Hunter PJ; Tawhai MH
    Acad Radiol; 2005 Nov; 12(11):1464-74. PubMed ID: 16253859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary arterial dilation by inhaled NO: arterial diameter, NO concentration relationship.
    Bentley J; Rickaby D; Haworth ST; Hanger CC; Dawson CA
    J Appl Physiol (1985); 2001 Nov; 91(5):1948-54. PubMed ID: 11641329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary angiography with 64-multidetector-row computed tomography in normal dogs.
    Drees R; Frydrychowicz A; Keuler NS; Reeder SB; Johnson R
    Vet Radiol Ultrasound; 2011; 52(4):362-7. PubMed ID: 21545367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of three-dimensional anatomy and function of pulmonary arteries with high-speed x-ray computed tomography.
    Liu YH; Hoffman EA; Ritman EL
    Invest Radiol; 1987 Jan; 22(1):28-36. PubMed ID: 3102399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.
    O'Dell WG; Gormaley AK; Prida DA
    Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for quantitative characterization of growth in the 3-D structure of rat pulmonary arteries.
    Razavi H; Dusch MN; Zarafshar SY; Taylor CA; Feinstein JA
    Microvasc Res; 2012 Mar; 83(2):146-53. PubMed ID: 22230111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels.
    Burrowes KS; Hunter PJ; Tawhai MH
    J Appl Physiol (1985); 2005 Aug; 99(2):731-8. PubMed ID: 15802366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery.
    Stoecker C; Welter S; Moltz JH; Lassen B; Kuhnigk JM; Krass S; Peitgen HO
    Med Phys; 2013 Sep; 40(9):091912. PubMed ID: 24007163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of a vascular tree model with the dynamic spatial reconstructor.
    Block M; Liu YH; Harris LD; Robb RA; Ritman EL
    J Comput Assist Tomogr; 1984 Jun; 8(3):390-400. PubMed ID: 6725684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branching pattern of pulmonary arterial tree in anesthetized dogs.
    Liu YH; Ritman EL
    J Biomech Eng; 1986 Aug; 108(3):289-93. PubMed ID: 3747473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography.
    Andriotis A; Zifan A; Gavaises M; Liatsis P; Pantos I; Theodorakakos A; Efstathopoulos EP; Katritsis D
    Catheter Cardiovasc Interv; 2008 Jan; 71(1):28-43. PubMed ID: 18098180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.