These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 11709575)

  • 21. Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.
    Ranathunge K; Steudle E; Lafitte R
    Planta; 2003 Jun; 217(2):193-205. PubMed ID: 12783327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass
    Liu X; Wang P; An Y; Wang CM; Hao Y; Zhou Y; Zhou Q; Wang P
    Front Plant Sci; 2022; 13():1007494. PubMed ID: 36212320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of
    Ejiri M; Shiono K
    Front Plant Sci; 2019; 10():254. PubMed ID: 30915090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radial hydraulic conductivity along developing onion roots.
    Barrowclough DE; Peterson CA; Steudle E
    J Exp Bot; 2000 Mar; 51(344):547-57. PubMed ID: 10938811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Permeability of Iris germanica's multiseriate exodermis to water, NaCl, and ethanol.
    Meyer CJ; Peterson CA; Steudle E
    J Exp Bot; 2011 Mar; 62(6):1911-26. PubMed ID: 21131546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological roles of Casparian strips and suberin in the transport of water and solutes.
    Calvo-Polanco M; Ribeyre Z; Dauzat M; Reyt G; Hidalgo-Shrestha C; Diehl P; Frenger M; Simonneau T; Muller B; Salt DE; Franke RB; Maurel C; Boursiac Y
    New Phytol; 2021 Dec; 232(6):2295-2307. PubMed ID: 34617285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa).
    Shiono K; Yoshikawa M; Kreszies T; Yamada S; Hojo Y; Matsuura T; Mori IC; Schreiber L; Yoshioka T
    New Phytol; 2022 Jan; 233(2):655-669. PubMed ID: 34725822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis.
    Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L
    Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell wall adaptations to multiple environmental stresses in maize roots.
    Degenhardt B; Gimmler H
    J Exp Bot; 2000 Mar; 51(344):595-603. PubMed ID: 10938816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low calcium-induced delay in development of root apoplastic barriers enhances Cd uptake and accumulation in Sedum alfredii.
    Liu Y; Tao Q; Guo X; Luo J; Li J; Liang Y; Li T
    Sci Total Environ; 2020 Jun; 723():137810. PubMed ID: 32213402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization.
    Schraut D; Ullrich CI; Hartung W
    J Exp Bot; 2004 Aug; 55(403):1635-41. PubMed ID: 15234994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Casparian strip development and its potential function in salt tolerance.
    Chen T; Cai X; Wu X; Karahara I; Schreiber L; Lin J
    Plant Signal Behav; 2011 Oct; 6(10):1499-502. PubMed ID: 21904117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.
    Wei X; Yang Z; Han G; Zhao X; Yin S; Yuan F; Wang B
    Plant Signal Behav; 2020 Mar; 15(3):1724465. PubMed ID: 32024414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy.
    Man Y; Zhao Y; Ye R; Lin J; Jing Y
    J Plant Physiol; 2018 Jan; 220():136-144. PubMed ID: 29175545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abscisic acid in the xylem: where does it come from, where does it go to?
    Hartung W; Sauter A; Hose E
    J Exp Bot; 2002 Jan; 53(366):27-32. PubMed ID: 11741037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of suberin monomers from the multiseriate exodermis of Iris germanica during maturation under differing growth conditions.
    Meyer CJ; Peterson CA; Bernards MA
    Planta; 2011 Apr; 233(4):773-86. PubMed ID: 21197545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.
    Shen J; Xu G; Zheng HQ
    Protoplasma; 2015 Jan; 252(1):173-80. PubMed ID: 24965373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.
    Kreszies T; Schreiber L; Ranathunge K
    J Plant Physiol; 2018 Aug; 227():75-83. PubMed ID: 29449027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for symplastic involvement in the radial movement of calcium in onion roots.
    Cholewa E; Peterson CA
    Plant Physiol; 2004 Apr; 134(4):1793-802. PubMed ID: 15064381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Casparian bands occur in the periderm of Pelargonium hortorum stem and root.
    Meyer CJ; Peterson CA
    Ann Bot; 2011 Apr; 107(4):591-8. PubMed ID: 21239408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.