These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 11709808)

  • 1. Probability density function learning by unsupervised neurons.
    Fiori S
    Int J Neural Syst; 2001 Oct; 11(5):399-417. PubMed ID: 11709808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-form expressions of some stochastic adapting equations for nonlinear adaptive activation function neurons.
    Fiori S
    Neural Comput; 2003 Dec; 15(12):2909-29. PubMed ID: 14629873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropy optimization by the PFANN network: application to blind source separation.
    Fiori S
    Network; 1999 May; 10(2):171-86. PubMed ID: 10378190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced search algorithms for information-theoretic learning with kernel-based estimators.
    Morejon RA; Principe JC
    IEEE Trans Neural Netw; 2004 Jul; 15(4):874-84. PubMed ID: 15461080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blind signal processing by the adaptive activation function neurons.
    Fiori S
    Neural Netw; 2000 Jul; 13(6):597-611. PubMed ID: 10987513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized neuron: feedforward and recurrent architectures.
    Kulkarni RV; Venayagamoorthy GK
    Neural Netw; 2009 Sep; 22(7):1011-7. PubMed ID: 19660907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.
    Vuković N; Miljković Z
    Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function approximation using combined unsupervised and supervised learning.
    Andras P
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):495-505. PubMed ID: 24807446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asynchronous cellular automaton-based neuron: theoretical analysis and on-FPGA learning.
    Matsubara T; Torikai H
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):736-48. PubMed ID: 24808424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive FIR neural model for centroid learning in self-organizing maps.
    Tucci M; Raugi M
    IEEE Trans Neural Netw; 2010 Jun; 21(6):948-60. PubMed ID: 20421182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning quadratic receptive fields from neural responses to natural stimuli.
    Rajan K; Marre O; Tkačik G
    Neural Comput; 2013 Jul; 25(7):1661-92. PubMed ID: 23607557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational learning and bits-back coding: an information-theoretic view to Bayesian learning.
    Honkela A; Valpola H
    IEEE Trans Neural Netw; 2004 Jul; 15(4):800-10. PubMed ID: 15461074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-square convergence analysis of ADALINE training with minimum error entropy criterion.
    Chen B; Zhu Y; Hu J
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1168-79. PubMed ID: 20570767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural observer with time-varying learning rate: analysis and applications.
    Gurubel KJ; Alanis AY; Sanchez EN; Carlos-Hernandez S
    Int J Neural Syst; 2014 Feb; 24(1):1450011. PubMed ID: 24344696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm.
    Han H; Wu XL; Qiao JF
    IEEE Trans Cybern; 2014 Apr; 44(4):554-64. PubMed ID: 23782841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probability density methods for smooth function approximation and learning in populations of tuned spiking neurons.
    Sanger TD
    Neural Comput; 1998 Aug; 10(6):1567-86. PubMed ID: 9698358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the maximization of information flow between spiking neurons.
    Parra LC; Beck JM; Bell AJ
    Neural Comput; 2009 Nov; 21(11):2991-3009. PubMed ID: 19635018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical description of the evolution of neural networks: learning rules and complexity.
    Holthausen K; Breidbach O
    Biol Cybern; 1999 Aug; 81(2):169-75. PubMed ID: 10481242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is extreme learning machine feasible? A theoretical assessment (part II).
    Lin S; Liu X; Fang J; Xu Z
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):21-34. PubMed ID: 25069128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.