BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11710014)

  • 21. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications.
    Potta T; Chun C; Song SC
    Biomaterials; 2009 Oct; 30(31):6178-92. PubMed ID: 19709738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility.
    Fairbanks BD; Schwartz MP; Bowman CN; Anseth KS
    Biomaterials; 2009 Dec; 30(35):6702-7. PubMed ID: 19783300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system.
    Shung AK; Behravesh E; Jo S; Mikos AG
    Tissue Eng; 2003 Apr; 9(2):243-54. PubMed ID: 12740087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel.
    Sheikholeslami P; Muirhead B; Baek DS; Wang H; Zhao X; Sivakumaran D; Boyd S; Sheardown H; Hoare T
    Exp Eye Res; 2015 Aug; 137():18-31. PubMed ID: 26044117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy.
    Lym JS; Nguyen QV; Ahn da W; Huynh CT; Jae HJ; Kim YI; Lee DS
    Acta Biomater; 2016 Sep; 41():253-63. PubMed ID: 27184404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels.
    Mawad D; Martens PJ; Odell RA; Poole-Warren LA
    Biomaterials; 2007 Feb; 28(6):947-55. PubMed ID: 17084445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous Formation of a Hydrogel Composed of Water-Soluble Phospholipid Polymers Grafted with Enantiomeric Oligo(lactic acid) Chains.
    Takami K; Watanabe J; Takai M; Ishihara K
    J Biomater Sci Polym Ed; 2011; 22(1-3):77-89. PubMed ID: 20546676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(vinyl alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Applications: General Characteristics and Optical Properties.
    Tummala GK; Rojas R; Mihranyan A
    J Phys Chem B; 2016 Dec; 120(51):13094-13101. PubMed ID: 27966943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation.
    Park M; Kim BS; Shin HK; Park SJ; Kim HY
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):5051-7. PubMed ID: 24094223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Injectable and mechanically robust 4-arm PPO-PEO/graphene oxide composite hydrogels for biomedical applications.
    Lee Y; Bae JW; Hoang Thi TT; Park KM; Park KD
    Chem Commun (Camb); 2015 May; 51(42):8876-9. PubMed ID: 25925723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery.
    Ma X; Xu T; Chen W; Qin H; Chi B; Ye Z
    Carbohydr Polym; 2018 Jan; 179():100-109. PubMed ID: 29111032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High water content hydrogel with super high refractive index.
    Zhou C; Heath DE; Sharif AR; Rayatpisheh S; Oh BH; Rong X; Beuerman R; Chan-Park MB
    Macromol Biosci; 2013 Nov; 13(11):1485-91. PubMed ID: 23881874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Suggs LJ; Kao EY; Palombo LL; Krishnan RS; Widmer MS; Mikos AG
    J Biomater Sci Polym Ed; 1998; 9(7):653-66. PubMed ID: 9686333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery.
    Payyappilly S; Dhara S; Chattopadhyay S
    J Biomed Mater Res A; 2014 May; 102(5):1500-9. PubMed ID: 23681592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers.
    Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K
    Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.