These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11710019)

  • 1. Thermoinactivation of diisopropylfluorophosphatase-containing polyurethane polymers.
    Drevon GF; Hartleib J; Scharff E; Rüterjans H; Russell AJ
    Biomacromolecules; 2001; 2(3):664-71. PubMed ID: 11710019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-activity enzyme-polyurethane coatings.
    Drevon GF; Danielmeier K; Federspiel W; Stolz DB; Wicks DA; Yu PC; Russell AJ
    Biotechnol Bioeng; 2002 Sep; 79(7):785-94. PubMed ID: 12209801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irreversible immobilization of diisopropylfluorophosphatase in polyurethane polymers.
    Drevon GF; Russell AJ
    Biomacromolecules; 2000; 1(4):571-6. PubMed ID: 11710183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing bioplastic-substrate interaction via pore induction and directed migration of enzyme location.
    Lele BS; Papworth G; Katsemi V; Rüterjans H; Martyano I; Klabunde KJ; Russell AJ
    Biotechnol Bioeng; 2004 Jun; 86(6):628-36. PubMed ID: 15137073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris.
    Hartleib J; Rüterjans H
    Protein Expr Purif; 2001 Feb; 21(1):210-9. PubMed ID: 11162408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species.
    Allen BL; Johnson JD; Walker JP
    Nanotechnology; 2012 Jul; 23(29):294009. PubMed ID: 22743846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris.
    Scharff EI; Koepke J; Fritzsch G; Lücke C; Rüterjans H
    Structure; 2001 Jun; 9(6):493-502. PubMed ID: 11435114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp).
    Latifi AM; Karami A; Khodi S
    Appl Biochem Biotechnol; 2015 Oct; 177(3):624-36. PubMed ID: 26239441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disulfide bridge formation to increase thermostability of DFPase enzyme: A computational study.
    Mohammadi M; Sakhteman A; Ahrari S; Hassanpour K; Hashemi SE; Farnoosh G
    Comput Biol Chem; 2018 Dec; 77():272-278. PubMed ID: 30396154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of calcium ions in the structure and function of the di-isopropylfluorophosphatase from Loligo vulgaris.
    Hartleib J; Geschwindner S; Scharff EI; Rüterjans H
    Biochem J; 2001 Feb; 353(Pt 3):579-89. PubMed ID: 11171055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the catalytic calcium-binding site in diisopropyl fluorophosphatase (DFPase)--comparison with related beta-propeller enzymes.
    Blum MM; Chen JC
    Chem Biol Interact; 2010 Sep; 187(1-3):373-9. PubMed ID: 20206152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in amino acid residues in the binding pockets dictate substrate specificities of mouse senescence marker protein-30, human paraoxonase1, and squid diisopropylfluorophosphatase.
    Belinskaya T; Pattabiraman N; diTargiani R; Choi M; Saxena A
    Biochim Biophys Acta; 2012 May; 1824(5):701-10. PubMed ID: 22401958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the reaction mechanism of the diisopropyl fluorophosphatase from Loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis.
    Hartleib J; Rüterjans H
    Biochim Biophys Acta; 2001 Apr; 1546(2):312-24. PubMed ID: 11295437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase).
    Chen JC; Mustyakimov M; Schoenborn BP; Langan P; Blum MM
    Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1131-8. PubMed ID: 21041927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of a diisopropyl-fluorophosphatase from squid Todarodes pacificus steenstrup.
    Wang F; Xiao M; Mu S
    J Biochem Toxicol; 1993 Sep; 8(3):161-6. PubMed ID: 8263902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a DFP-hydrolyzing enzyme in squid posterior salivary gland by use of Soman, DFP and manganous ion.
    Hoskin FC; Prusch RD
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1983; 75(1):17-20. PubMed ID: 6135555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase).
    Melzer M; Heidenreich A; Dorandeu F; Gäb J; Kehe K; Thiermann H; Letzel T; Blum MM
    Drug Test Anal; 2012; 4(3-4):262-70. PubMed ID: 22174192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The encapsulation of squid diisopropylphosphorofluoridate-hydrolyzing enzyme within mouse erythrocytes.
    McGuinn WD; Cannon EP; Chui CT; Pei L; Petrikovics I; Way JL
    Fundam Appl Toxicol; 1993 Jul; 21(1):38-43. PubMed ID: 8365583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure/function analyses of human serum paraoxonase (HuPON1) mutants designed from a DFPase-like homology model.
    Yeung DT; Josse D; Nicholson JD; Khanal A; McAndrew CW; Bahnson BJ; Lenz DE; Cerasoli DM
    Biochim Biophys Acta; 2004 Oct; 1702(1):67-77. PubMed ID: 15450851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary X-ray crystallographic analysis of DFPase from Loligo vulgaris.
    Scharff EI; Lücke C; Fritzsch G; Koepke J; Hartleib J; Dierl S; Rüterjans H
    Acta Crystallogr D Biol Crystallogr; 2001 Jan; 57(Pt 1):148-9. PubMed ID: 11134940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.