These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11710029)

  • 1. Biological thermal detection in infrared imaging snakes. 1. Ultramicrostructure of pit receptor organs.
    Fuchigami N; Hazel J; Gorbunov VV; Stone M; Grace M; Tsukruk VV
    Biomacromolecules; 2001; 2(3):757-64. PubMed ID: 11710029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors.
    Gorbunov V; Fuchigami N; Stone M; Grace M; Tsukruk VV
    Biomacromolecules; 2002; 3(1):106-15. PubMed ID: 11866562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface ultrastructure of pit organ, spectacle, and non pit organ epidermis of infrared imaging boid snakes: A scanning probe and scanning electron microscopy study.
    Campbell AL; Bunning TJ; Stone MO; Church D; Grace MS
    J Struct Biol; 1999 Jun; 126(2):105-20. PubMed ID: 10388622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultramicrostructure and microthermomechanics of biological IR detectors: materials properties from a biomimetic perspective.
    Hazel J; Fuchigami N; Gorbunov V; Schmitz H; Stone M; Tsukruk VV
    Biomacromolecules; 2001; 2(1):304-12. PubMed ID: 11749187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Python pit organ: imaging and immunocytochemical analysis of an extremely sensitive natural infrared detector.
    Grace MS; Church DR; Kelly CT; Lynn WF; Cooper TM
    Biosens Bioelectron; 1999 Jan; 14(1):53-9. PubMed ID: 10028649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.
    Panzano VC; Kang K; Garrity PA
    Sci Signal; 2010 Jun; 3(127):pe22. PubMed ID: 20571127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.
    Grace MS; Woodward OM
    Brain Res; 2001 Nov; 919(2):250-8. PubMed ID: 11701137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thermal background determines how the infrared and visual systems interact in pit vipers.
    Chen Q; Liu Y; Brauth SE; Fang G; Tang Y
    J Exp Biol; 2017 Sep; 220(Pt 17):3103-3109. PubMed ID: 28855322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae).
    Berthé RA; Westhoff G; Bleckmann H; Gorb SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):311-8. PubMed ID: 19137315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings.
    Amemiya F; Ushiki T; Goris RC; Atobe Y; Kusunoki T
    Anat Rec; 1996 Sep; 246(1):135-46. PubMed ID: 8876832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pit organs of elasmobranchs: a review.
    Peach MB; Marshall NJ
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1131-4. PubMed ID: 11079384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological infrared imaging and sensing.
    Campbell AL; Naik RR; Sowards L; Stone MO
    Micron; 2002; 33(2):211-25. PubMed ID: 11567889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal modeling of snake infrared reception: evidence for limited detection range.
    Jones BS; Lynn WF; Stone MO
    J Theor Biol; 2001 Mar; 209(2):201-11. PubMed ID: 11401462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular convergence of infrared vision in snakes.
    Yokoyama S; Altun A; DeNardo DF
    Mol Biol Evol; 2011 Jan; 28(1):45-8. PubMed ID: 20937734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prey targeting by the infrared-imaging snake Python molurus: effects of experimental and congenital visual deprivation.
    Grace MS; Woodward OM; Church DR; Calisch G
    Behav Brain Res; 2001 Feb; 119(1):23-31. PubMed ID: 11164522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow in snake infrared organs: response-induced changes in individual vessels.
    Goris RC; Atobe Y; Nakano M; Funakoshi K; Terada K
    Microcirculation; 2007 Feb; 14(2):99-110. PubMed ID: 17365665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and electrophysiological properties of cutaneous sensilla in agamid lizards.
    Hiller U
    Pflugers Arch; 1978 Nov; 377(2):89-91. PubMed ID: 569813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale design of snake skin for reptation locomotions via friction anisotropy.
    Hazel J; Stone M; Grace MS; Tsukruk VV
    J Biomech; 1999 May; 32(5):477-84. PubMed ID: 10327001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some evidence for the ampullary organs in the European cave salamander Proteus anguinus (Urodela, Amphibia).
    Istenic L; Bulog B
    Cell Tissue Res; 1984; 235(2):393-402. PubMed ID: 6705040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new type of insect infrared organ of low thermal mass.
    Schmitz H; Schmitz A; Trenner S; Bleckmann H
    Naturwissenschaften; 2002 May; 89(5):226-9. PubMed ID: 12135088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.