These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11710043)

  • 41. On the specific role of coions and counterions on kappa-carrageenan conformation.
    Ciancia M; Milas M; Rinaudo M
    Int J Biol Macromol; 1997 Feb; 20(1):35-41. PubMed ID: 9110183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of extraction parameters on the chemical structure and gel properties of kappa/iota-hybrid carrageenans obtained from Mastocarpus stellatus.
    Hilliou L; Larotonda FD; Abreu P; Ramos AM; Sereno AM; Gonçalves MP
    Biomol Eng; 2006 Sep; 23(4):201-8. PubMed ID: 16757212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of calcium ions on the organization of iota-carrageenan helices: an X-ray investigation.
    Janaswamy S; Chandrasekaran R
    Carbohydr Res; 2002 Mar; 337(6):523-35. PubMed ID: 11890890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical study of hydrogen bond interactions of fluvastatin with ι-carrageenan and λ-carrageenan.
    Papadopoulos AG; Sigalas MP
    J Mol Model; 2011 Jul; 17(7):1669-78. PubMed ID: 20981460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Concentration dependence of the order-disorder transition of carrageenans. Further confirmatory evidence for the double helix in solution.
    Bryce TA; Clark AH; Rees DA; Reid DS
    Eur J Biochem; 1982 Feb; 122(1):63-9. PubMed ID: 7060569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy.
    Schefer L; Adamcik J; Mezzenga R
    Angew Chem Int Ed Engl; 2014 May; 53(21):5376-9. PubMed ID: 24740853
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae.
    Michel G; Helbert W; Kahn R; Dideberg O; Kloareg B
    J Mol Biol; 2003 Nov; 334(3):421-33. PubMed ID: 14623184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dynamics simulations and X-ray scattering show the κ-carrageenan disorder-to-order transition to be the formation of double-helices.
    Westberry BP; Mansel BW; Lundin L; Williams MAK
    Carbohydr Polym; 2023 Feb; 302():120417. PubMed ID: 36604079
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of polyelectrolyte counterion specificity, charge density, and conformation on polyelectrolyte-amphiphile interaction: the carrageenan/furcellaran-amitriptyline system.
    Hugerth A; Sundelöf LO
    Biopolymers; 2001 Feb; 58(2):186-94. PubMed ID: 11093117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of salt on the coil-helix transition of gelatin at early stages: Optical rotation, rheology and DSC studies.
    Qiao C; Zhang J; Ma X; Liu W; Liu Q
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1074-1079. PubMed ID: 29017883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blood and cell compatibility of gelatin-carrageenan mixtures cross-linked by glutaraldehyde.
    Kim SS; Kim HW; Yuk SH; Oh SY; Pak PK; Lee HB
    Biomaterials; 1996 Apr; 17(8):813-21. PubMed ID: 8730966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in the polyelectrolyte-amphiphile interaction due to helix-coil transition induced by specific counterions or variations in temperature.
    Caram-Lelham N; Sundelöf LO
    Biopolymers; 1996 Sep; 39(3):387-93. PubMed ID: 8756518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Associative behaviour of κ-carrageenan in aqueous solutions and its modification by different monovalent salts as reflected by viscometric parameters.
    Bercea M; Wolf BA
    Int J Biol Macromol; 2019 Nov; 140():661-667. PubMed ID: 31437501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computer modelling of kappa carrageenan-mannan interactions.
    Turquois T; Rochas C; Taravel FR; Tvaroska I
    J Mol Recognit; 1994 Dec; 7(4):243-50. PubMed ID: 7734149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of urea on the three-dimensional structure, viscoelastic and thermal behavior of iota-carrageenan.
    Patel BK; Campanella OH; Janaswamy S
    Carbohydr Polym; 2013 Feb; 92(2):1873-9. PubMed ID: 23399231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The gelling of κ-carrageenan in light and heavy water.
    Cardoso MV; Sabadini E
    Carbohydr Res; 2010 Nov; 345(16):2368-73. PubMed ID: 20869043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of calcium-mediated junction zones at the onset of the sol-gel transition of commercial kappa-carrageenan solutions.
    Nickerson MT; Darvesh R; Paulson AT
    J Food Sci; 2010 Apr; 75(3):E153-6. PubMed ID: 20492288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformation and association of kappa-carrageenan in the presence of locust bean gum in mixed NaI/CsI solutions from rheology and cryo-TEM.
    Chronakis IS; Borgström J; Piculell L
    Int J Biol Macromol; 1999 Aug; 25(4):317-28. PubMed ID: 10456772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermally induced coil-to-helix transition of sodium gellan gum with different molar masses in aqueous salt solutions.
    Ogawa E; Takahashi R; Yajima H; Nishinari K
    Biopolymers; 2005 Nov; 79(4):207-17. PubMed ID: 16100717
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cation effects on swelling of kappa-carrageenan: a photon transmission study.
    Kara S; Tamerler C; Pekcan O
    Biopolymers; 2003 Oct; 70(2):240-51. PubMed ID: 14517912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.