BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11710094)

  • 1. Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp.
    Tabata K; Abe H; Doi Y
    Biomacromolecules; 2000; 1(2):157-61. PubMed ID: 11710094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater.
    Tabata K; Kasuya KI; Abe H; Masuda K; Doi Y
    Appl Environ Microbiol; 1999 Sep; 65(9):4268-70. PubMed ID: 10473451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of poly(aspartic acid) hydrolase from Sphingomonas sp. KT-1.
    Tabata K; Kajiyama M; Hiraishi T; Abe H; Yamato I; Doi Y
    Biomacromolecules; 2001; 2(4):1155-60. PubMed ID: 11777387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and molecular characterization of poly(aspartic acid) hydrolase-2 from sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Tabata K; Abe H; Yamato I; Doi Y
    Biomacromolecules; 2003; 4(5):1285-92. PubMed ID: 12959596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of poly(aspartic acid) (PAA) hydrolase-1 gene from Pedobacter sp. KP-2 and hydrolysis of thermally synthesized PAA by its gene product.
    Hiraishi T; Masuda E; Kanayama N; Nagata M; Doi Y; Abe H; Maeda M
    Macromol Biosci; 2009 Jan; 9(1):10-9. PubMed ID: 18756460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(aspartate) hydrolases: biochemical properties and applications.
    Hiraishi T; Maeda M
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):895-903. PubMed ID: 21713512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic hydrolysis of alpha- and beta-oligo(L-aspartic acid)s by poly(aspartic acid) hydrolases-1 and 2 from Sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Yamato I; Doi Y
    Macromol Biosci; 2004 Mar; 4(3):330-9. PubMed ID: 15468224
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Brambley CA; Yared TJ; Gonzalez M; Jansch AL; Wallen JR; Weiland MH; Miller JM
    J Phys Chem B; 2021 Jun; 125(22):5722-5739. PubMed ID: 34060838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis and characterization of poly(aspartic acid) hydrolase-1 from Sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Tabata K; Yamato I; Doi Y
    Biomacromolecules; 2003; 4(1):80-6. PubMed ID: 12523851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.
    Hiraishi T
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1623-1630. PubMed ID: 26695157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of Microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba - Argentina).
    Valeria AM; Ricardo EJ; Stephan P; Alberto WD
    Biodegradation; 2006 Oct; 17(5):447-55. PubMed ID: 16485086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Sphingomonas sp. KT-1 PahZ1 monomers efficiently degrade poly(aspartic acid).
    Lamantia T; Jansch A; Marsee JD; Weiland MH; Miller JM
    Biophys Chem; 2022 Feb; 281():106745. PubMed ID: 34953381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria.
    Männistö MK; Tiirola MA; Puhakka JA
    Biodegradation; 2001; 12(5):291-301. PubMed ID: 11995822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater.
    Sakai K; Yamanaka H; Moriyoshi K; Ohmoto T; Ohe T
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):51-7. PubMed ID: 17213659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of leuco derivatives of triphenylmethane dyes by Sphingomonas sp. CM9.
    Wu J; Li L; Du H; Jiang L; Zhang Q; Wei Z; Wang X; Xiao L; Yang L
    Biodegradation; 2011 Sep; 22(5):897-904. PubMed ID: 21188476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B.
    Cui CZ; Zeng C; Wan X; Chen D; Zhang JY; Shen P
    J Microbiol Biotechnol; 2008 Jan; 18(1):63-6. PubMed ID: 18239418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, identification, and degradation characteristics of phenazine-1-carboxylic acid-degrading strain Sphingomonas sp. DP58.
    Yang ZJ; Wang W; Jin Y; Hu HB; Zhang XH; Xu YQ
    Curr Microbiol; 2007 Oct; 55(4):284-7. PubMed ID: 17700987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2.
    Pinyakong O; Habe H; Supaka N; Pinpanichkarn P; Juntongjin K; Yoshida T; Furihata K; Nojiri H; Yamane H; Omori T
    FEMS Microbiol Lett; 2000 Oct; 191(1):115-21. PubMed ID: 11004408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of polyvinyl alcohol by Sphingomonas sp. SA3 and its symbiote.
    Kim BC; Sohn CK; Lim SK; Lee JW; Park W
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):70-4. PubMed ID: 12545389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation and mineralisation of diuron by Sphingomonas sp. SRS2 and its potential for remediating at a realistic µg L(-1) diuron concentration.
    Sørensen SR; Juhler RK; Aamand J
    Pest Manag Sci; 2013 Nov; 69(11):1239-44. PubMed ID: 23494959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.