These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11710178)

  • 41. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2.
    Brooks AE; Stricker SM; Joshi SB; Kamerzell TJ; Middaugh CR; Lewis RV
    Biomacromolecules; 2008 Jun; 9(6):1506-10. PubMed ID: 18457450
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water-soluble beta-sheet models which self-assemble into fibrillar structures.
    Janek K; Behlke J; Zipper J; Fabian H; Georgalis Y; Beyermann M; Bienert M; Krause E
    Biochemistry; 1999 Jun; 38(26):8246-52. PubMed ID: 10387070
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial production of spider silk proteins.
    Fahnestock SR; Yao Z; Bedzyk LA
    J Biotechnol; 2000 Aug; 74(2):105-19. PubMed ID: 11763501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembly of genetically engineered spider silk block copolymers.
    Rabotyagova OS; Cebe P; Kaplan DL
    Biomacromolecules; 2009 Feb; 10(2):229-36. PubMed ID: 19128057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk.
    Rathore O; Sogah DY
    J Am Chem Soc; 2001 Jun; 123(22):5231-9. PubMed ID: 11457385
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria.
    Anderson JP; Cappello J; Martin DC
    Biopolymers; 1994 Aug; 34(8):1049-58. PubMed ID: 8075387
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.
    Giesa T; Perry CC; Buehler MJ
    Biomacromolecules; 2016 Feb; 17(2):427-36. PubMed ID: 26669270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silk properties determined by gland-specific expression of a spider fibroin gene family.
    Guerette PA; Ginzinger DG; Weber BH; Gosline JM
    Science; 1996 Apr; 272(5258):112-5. PubMed ID: 8600519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical, biophysical, and pharmacological characterization of bacterially expressed human agouti-related protein.
    Rosenfeld RD; Zeni L; Welcher AA; Narhi LO; Hale C; Marasco J; Delaney J; Gleason T; Philo JS; Katta V; Hui J; Baumgartner J; Graham M; Stark KL; Karbon W
    Biochemistry; 1998 Nov; 37(46):16041-52. PubMed ID: 9819197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins.
    Humenik M; Magdeburg M; Scheibel T
    J Struct Biol; 2014 Jun; 186(3):431-7. PubMed ID: 24657229
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.
    Renault A; Rioux-Dubé JF; Lefèvre T; Pezennec S; Beaufils S; Vié V; Tremblay M; Pézolet M
    Langmuir; 2009 Jul; 25(14):8170-80. PubMed ID: 19400566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.
    Zhou S; Huang W; Belton DJ; Simmons LO; Perry CC; Wang X; Kaplan DL
    Acta Biomater; 2015 Mar; 15():173-80. PubMed ID: 25462851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fiber formation of a synthetic spider peptide derived from Nephila clavata.
    Hidaka Y; Kontani K; Taniguchi R; Saiki M; Yokoi S; Yukuhiro K; Yamaguchi H; Miyazawa M
    Biopolymers; 2011; 96(2):222-7. PubMed ID: 20564008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recombinant Silk Proteins with Additional Polyalanine Have Excellent Mechanical Properties.
    Zhao S; Ye X; Wu M; Ruan J; Wang X; Tang X; Zhong B
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice.
    Xu HT; Fan BL; Yu SY; Huang YH; Zhao ZH; Lian ZX; Dai YP; Wang LL; Liu ZL; Fei J; Li N
    Anim Biotechnol; 2007; 18(1):1-12. PubMed ID: 17364439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk.
    Simmons AH; Michal CA; Jelinski LW
    Science; 1996 Jan; 271(5245):84-7. PubMed ID: 8539605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.