BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11710182)

  • 1. Structure and permeation properties of cellulose esters asymmetric membranes.
    Stamatialis DF; Dias CR; de Pinho MN
    Biomacromolecules; 2000; 1(4):564-70. PubMed ID: 11710182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water.
    Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM
    Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal.
    Riaz T; Ahmad A; Saleemi S; Adrees M; Jamshed F; Hai AM; Jamil T
    Carbohydr Polym; 2016 Nov; 153():582-591. PubMed ID: 27561531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.
    Sabir A; Shafiq M; Islam A; Sarwar A; Dilshad MR; Shafeeq A; Zahid Butt MT; Jamil T
    Carbohydr Polym; 2015 Nov; 132():589-97. PubMed ID: 26256386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dewetting and surface properties of ultrathin films of cellulose esters.
    Kosaka PM; Kawano Y; Petri DF
    J Colloid Interface Sci; 2007 Dec; 316(2):671-7. PubMed ID: 17707857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization.
    Qaiser AA; Hyland MM; Patterson DA
    J Phys Chem B; 2009 Nov; 113(45):14986-93. PubMed ID: 19888765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO
    Gebru KA; Das C
    Chemosphere; 2018 Jan; 191():673-684. PubMed ID: 29078191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility.
    Wang M; Yuan J; Huang X; Cai X; Li L; Shen J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching.
    Olde Riekerink MB; Engbers GH; Wessling M; Feijen J
    J Colloid Interface Sci; 2002 Jan; 245(2):338-48. PubMed ID: 16290368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes.
    Ibrahim MM; Koschella A; Kadry G; Heinze T
    Carbohydr Polym; 2013 Jun; 95(1):414-20. PubMed ID: 23618287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility.
    Liu PS; Chen Q; Liu X; Yuan B; Wu SS; Shen J; Lin SC
    Biomacromolecules; 2009 Oct; 10(10):2809-16. PubMed ID: 19743844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose acetate composite membranes tailored with exfoliated tungsten disulfide nanosheets: Permeation characteristics and antifouling ability.
    Vetrivel S; Sri Abirami Saraswathi M; Rana D; Divya K; Nagendran A
    Int J Biol Macromol; 2018 Aug; 115():540-546. PubMed ID: 29679672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of Chitosan Membranes via Methane Ion Beam.
    Gholami N; Jaleh B; Golbedaghi R; Larijani MM; Wanichapichart P; Nasrollahzadeh M; Varma RS
    Molecules; 2020 May; 25(10):. PubMed ID: 32414061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.
    Vinodhini PA; K S; Thandapani G; P N S; Jayachandran V; Sukumaran A
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1721-1729. PubMed ID: 28363652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination.
    Ahmad A; Jamshed F; Riaz T; Gul SE; Waheed S; Sabir A; AlAnezi AA; Adrees M; Jamil T
    Carbohydr Polym; 2016 Sep; 149():207-16. PubMed ID: 27261744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility.
    Azhar O; Jahan Z; Sher F; Niazi MBK; Kakar SJ; Shahid M
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112127. PubMed ID: 34082944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
    da Silva JB; Pereira FV; Druzian JI
    J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.
    Qaiser AA; Hyland MM; Patterson DA
    J Phys Chem B; 2011 Feb; 115(7):1652-61. PubMed ID: 21287993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance.
    Fu YJ; Qui HZ; Liao KS; Lue SJ; Hu CC; Lee KR; Lai JY
    Langmuir; 2010 Mar; 26(6):4392-9. PubMed ID: 20214398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.