These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11710200)
1. Pore sizes in hydrated dextran microspheres. Stenekes RJ; De Smedt SC; Demeester J; Sun G; Zhang Z; Hennink WE Biomacromolecules; 2000; 1(4):696-703. PubMed ID: 11710200 [TBL] [Abstract][Full Text] [Related]
2. Effect of particle size and charge on the network properties of microsphere-based hydrogels. Van Tomme SR; van Nostrum CF; Dijkstra M; De Smedt SC; Hennink WE Eur J Pharm Biopharm; 2008 Oct; 70(2):522-30. PubMed ID: 18582574 [TBL] [Abstract][Full Text] [Related]
3. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
4. Effect of polymerization conditions on the network properties of dex-HEMA microspheres and macro-hydrogels. Chung JT; Vlugt-Wensink KD; Hennink WE; Zhang Z Int J Pharm; 2005 Jan; 288(1):51-61. PubMed ID: 15607257 [TBL] [Abstract][Full Text] [Related]
5. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. Franssen O; Vandervennet L; Roders P; Hennink WE J Control Release; 1999 Aug; 60(2-3):211-21. PubMed ID: 10425327 [TBL] [Abstract][Full Text] [Related]
6. Controlled release of a model protein from enzymatically degrading dextran microspheres. Franssen O; Stenekes RJ; Hennink WE J Control Release; 1999 May; 59(2):219-28. PubMed ID: 10332056 [TBL] [Abstract][Full Text] [Related]
7. Effect of excipients on the encapsulation efficiency and release of human growth hormone from dextran microspheres. Vlugt-Wensink KD; Meijer YJ; van Steenbergen MJ; Verrijk R; Jiskoot W; Crommelin DJ; Hennink WE Eur J Pharm Biopharm; 2007 Nov; 67(3):589-96. PubMed ID: 17540550 [TBL] [Abstract][Full Text] [Related]
8. Self-gelling hydrogels based on oppositely charged dextran microspheres. Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188 [TBL] [Abstract][Full Text] [Related]
9. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: influence of network structure and drug size on release rate. Bertz A; Wöhl-Bruhn S; Miethe S; Tiersch B; Koetz J; Hust M; Bunjes H; Menzel H J Biotechnol; 2013 Jan; 163(2):243-9. PubMed ID: 22789475 [TBL] [Abstract][Full Text] [Related]
10. Immunogenicity of meningococcal PorA formulations encapsulated in biodegradable microspheres. Arigita C; van den Berg J; Wensink K; van Steenbergen M; Hennink WE; Crommelin DJ; Kersten GF; Jiskoot W Eur J Pharm Sci; 2004 Feb; 21(2-3):131-41. PubMed ID: 14757484 [TBL] [Abstract][Full Text] [Related]
11. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Lévesque SG; Lim RM; Shoichet MS Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718 [TBL] [Abstract][Full Text] [Related]
12. The preparation of dextran microspheres in an all-aqueous system: effect of the formulation parameters on particle characteristics. Stenekes RJ; Franssen O; van Bommel EM; Crommelin DJ; Hennink WE Pharm Res; 1998 Apr; 15(4):557-61. PubMed ID: 9587951 [TBL] [Abstract][Full Text] [Related]
13. Degradable dextran microspheres for the controlled release of liposomes. Stenekes RJ; Loebis AE; Fernandes CM; Crommelin DJ; Hennink WE Int J Pharm; 2001 Feb; 214(1-2):17-20. PubMed ID: 11282230 [TBL] [Abstract][Full Text] [Related]
14. Crosslinked Dextran Gel Microspheres with Computed Tomography Angiography and Drug Release Function. Zhu C; Ma X; Ma D; Zhang T; Gu N J Nanosci Nanotechnol; 2018 Apr; 18(4):2931-2937. PubMed ID: 29442976 [TBL] [Abstract][Full Text] [Related]
15. Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres. Van Tomme SR; Mens A; van Nostrum CF; Hennink WE Biomacromolecules; 2008 Jan; 9(1):158-65. PubMed ID: 18081253 [TBL] [Abstract][Full Text] [Related]
16. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375 [TBL] [Abstract][Full Text] [Related]
17. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Mao S; Xu J; Cai C; Germershaus O; Schaper A; Kissel T Int J Pharm; 2007 Apr; 334(1-2):137-48. PubMed ID: 17196348 [TBL] [Abstract][Full Text] [Related]
18. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate). Kempen DH; Lu L; Kim C; Zhu X; Dhert WJ; Currier BL; Yaszemski MJ J Biomed Mater Res A; 2006 Apr; 77(1):103-11. PubMed ID: 16392139 [TBL] [Abstract][Full Text] [Related]
19. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Hiemstra C; Aa LJ; Zhong Z; Dijkstra PJ; Feijen J Biomacromolecules; 2007 May; 8(5):1548-56. PubMed ID: 17425366 [TBL] [Abstract][Full Text] [Related]
20. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres. Stenekes RJ; Franssen O; van Bommel EM; Crommelin DJ; Hennink WE Int J Pharm; 1999 Jun; 183(1):29-32. PubMed ID: 10361149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]