These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11710200)
21. Biphasic release of protein from polyethylene glycol and polyethylene glycol/modified dextran microspheres. Nguyen HX; O'Rear EA J Biomed Mater Res A; 2013 Sep; 101(9):2699-705. PubMed ID: 23427111 [TBL] [Abstract][Full Text] [Related]
22. Release of bioactive BMP from dextran-derived microspheres: a novel delivery concept. Chen FM; Wu ZF; Sun HH; Wu H; Xin SN; Wang QT; Dong GY; Ma ZW; Huang S; Zhang YJ; Jin Y Int J Pharm; 2006 Jan; 307(1):23-32. PubMed ID: 16260104 [TBL] [Abstract][Full Text] [Related]
23. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Kang J; Wu F; Cai Y; Xu M; He M; Yuan W Eur J Pharm Sci; 2014 Oct; 62():141-7. PubMed ID: 24907681 [TBL] [Abstract][Full Text] [Related]
24. Controlled release of liposomes from biodegradable dextran microspheres: a novel delivery concept. Stenekes RJ; Loebis AE; Fernandes CM; Crommelin DJ; Hennink WE Pharm Res; 2000 Jun; 17(6):690-5. PubMed ID: 10955842 [TBL] [Abstract][Full Text] [Related]
25. In vitro degradation behavior of microspheres based on cross-linked dextran. Vlugt-Wensink KD; Jiang X; Schotman G; Kruijtzer G; Vredenberg A; Chung JT; Zhang Z; Versluis C; Ramos D; Verrijk R; Jiskoot W; Crommelin DJ; Hennink WE Biomacromolecules; 2006 Nov; 7(11):2983-90. PubMed ID: 17096522 [TBL] [Abstract][Full Text] [Related]
26. On the release of proteins from degrading dextran methacrylate hydrogels and the correlation with the rheologic properties of the hydrogels. Meyvis T; De Smedt S; Stubbe B; Hennink W; Demeester J Pharm Res; 2001 Nov; 18(11):1593-9. PubMed ID: 11758768 [TBL] [Abstract][Full Text] [Related]
27. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731 [TBL] [Abstract][Full Text] [Related]
28. Regulation on both pore structure and pressure-resistant property of uniform agarose microspheres for high-resolution chromatography. Zhao L; Che X; Huang Y; Zhu K; Du Y; Gao J; Zhang R; Zhang Y; Ma G J Chromatogr A; 2022 Oct; 1681():463461. PubMed ID: 36108352 [TBL] [Abstract][Full Text] [Related]
29. Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. Kim SH; Chu CC J Biomed Mater Res; 2000; 53(3):258-66. PubMed ID: 10813766 [TBL] [Abstract][Full Text] [Related]
30. Degradation behavior of dextran hydrogels composed of positively and negatively charged microspheres. Van Tomme SR; van Nostrum CF; de Smedt SC; Hennink WE Biomaterials; 2006 Aug; 27(22):4141-8. PubMed ID: 16600367 [TBL] [Abstract][Full Text] [Related]
31. Preparation and drug controlled release of porous octyl-dextran microspheres. Hou X; Liu Y J Biomater Sci Polym Ed; 2015; 26(15):1051-66. PubMed ID: 26230155 [TBL] [Abstract][Full Text] [Related]
32. Structural analysis of dextran-based hydrogels obtained chemoenzymatically. Ferreira L; Figueiredo MM; Gil MH; Ramos MA J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):55-64. PubMed ID: 16211568 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers: influence of encapsulation technique and polymer composition on particle characteristics. Pistel KF; Bittner B; Koll H; Winter G; Kissel T J Control Release; 1999 Jun; 59(3):309-25. PubMed ID: 10332063 [TBL] [Abstract][Full Text] [Related]
34. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading]. Zheng CL; Liu XQ; Zhu JB; Zhao YN Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577 [TBL] [Abstract][Full Text] [Related]
35. A microplate compression method for elastic modulus measurement of soft and viscoelastic collagen microspheres. Chan BP; Li CH; Au-Yeung KL; Sze KY; Ngan AH Ann Biomed Eng; 2008 Jul; 36(7):1254-67. PubMed ID: 18454315 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. Chen FM; Zhao YM; Wu H; Deng ZH; Wang QT; Zhou W; Liu Q; Dong GY; Li K; Wu ZF; Jin Y J Control Release; 2006 Aug; 114(2):209-22. PubMed ID: 16859799 [TBL] [Abstract][Full Text] [Related]
37. Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations. Vlugt-Wensink KD; Vlugt TJ; Jiskoot W; Crommelin DJ; Verrijk R; Hennink WE J Control Release; 2006 Mar; 111(1-2):117-27. PubMed ID: 16430986 [TBL] [Abstract][Full Text] [Related]
38. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation. Fu J; Wiraja C; Muhammad HB; Xu C; Wang DA Acta Biomater; 2017 Aug; 58():225-237. PubMed ID: 28611001 [TBL] [Abstract][Full Text] [Related]
39. Preparation of cationic biodegradable dextran microspheres loaded with BSA and study on the mechanism of protein loading. Zheng C; Liu X; Zhu J; Zhao Y Drug Dev Ind Pharm; 2012 Jun; 38(6):653-8. PubMed ID: 22468612 [TBL] [Abstract][Full Text] [Related]
40. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Liu Y; Chan-Park MB Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]