These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11710454)

  • 1. Vestibular discrimination of gravity and translational acceleration.
    Angelaki DE; Wei M; Merfeld DM
    Ann N Y Acad Sci; 2001 Oct; 942():114-27. PubMed ID: 11710454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of inertial motion: neural strategies to resolve ambiguous otolith information.
    Angelaki DE; McHenry MQ; Dickman JD; Newlands SD; Hess BJ
    J Neurosci; 1999 Jan; 19(1):316-27. PubMed ID: 9870961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt.
    Zupan LH; Peterka RJ; Merfeld DM
    J Neurophysiol; 2000 Oct; 84(4):2001-15. PubMed ID: 11024093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity or translation: central processing of vestibular signals to detect motion or tilt.
    Angelaki DE; Dickman JD
    J Vestib Res; 2003; 13(4-6):245-53. PubMed ID: 15096668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisensory integration and internal models for sensing gravity effects in primates.
    Lacquaniti F; Bosco G; Gravano S; Indovina I; La Scaleia B; Maffei V; Zago M
    Biomed Res Int; 2014; 2014():615854. PubMed ID: 25061610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage.
    Karmali F; Haburcakova C; Gong W; Della Santina CC; Merfeld DM; Lewis RF
    J Neurosci; 2021 Apr; 41(17):3879-3888. PubMed ID: 33731447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation.
    Merfeld DM; Zupan LH; Gifford CA
    J Neurophysiol; 2001 Apr; 85(4):1648-60. PubMed ID: 11287488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses.
    Angelaki DE; Dickman JD
    J Neurophysiol; 2000 Oct; 84(4):2113-32. PubMed ID: 11024100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1995 May; 73(5):1729-51. PubMed ID: 7623076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli.
    Schneider AD; Jamali M; Carriot J; Chacron MJ; Cullen KE
    J Neurosci; 2015 Apr; 35(14):5522-36. PubMed ID: 25855169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian model of the disambiguation of gravitoinertial force by visual cues.
    MacNeilage PR; Banks MS; Berger DR; Bülthoff HH
    Exp Brain Res; 2007 May; 179(2):263-90. PubMed ID: 17136526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception.
    Liu S; Angelaki DE
    J Neurosci; 2009 Jul; 29(28):8936-45. PubMed ID: 19605631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory vestibular contributions to constructing internal models of self-motion.
    Green AM; Shaikh AG; Angelaki DE
    J Neural Eng; 2005 Sep; 2(3):S164-79. PubMed ID: 16135882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roll tilt psychophysics in rhesus monkeys during vestibular and visual stimulation.
    Lewis RF; Haburcakova C; Merfeld DM
    J Neurophysiol; 2008 Jul; 100(1):140-53. PubMed ID: 18417632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oculomotor control of primary eye position discriminates between translation and tilt.
    Hess BJ; Angelaki DE
    J Neurophysiol; 1999 Jan; 81(1):394-8. PubMed ID: 9914299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of egomotion in the macaque cerebellar vermis.
    Angelaki DE; Yakusheva TA; Green AM; Dickman JD; Blazquez PM
    Cerebellum; 2010 Jun; 9(2):174-82. PubMed ID: 20012388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus.
    Angelaki DE; Yakusheva TA
    Ann N Y Acad Sci; 2009 May; 1164():19-28. PubMed ID: 19645876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity.
    Mackrous I; Carriot J; Jamali M; Cullen KE
    Curr Biol; 2019 Aug; 29(16):2698-2710.e4. PubMed ID: 31378613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.