These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11711667)

  • 1. Spin ice state in frustrated magnetic pyrochlore materials.
    Bramwell ST; Gingras MJ
    Science; 2001 Nov; 294(5546):1495-501. PubMed ID: 11711667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial 'spin ice' in a geometrically frustrated lattice of nanoscale ferromagnetic islands.
    Wang RF; Nisoli C; Freitas RS; Li J; McConville W; Cooley BJ; Lund MS; Samarth N; Leighton C; Crespi VH; Schiffer P
    Nature; 2006 Jan; 439(7074):303-6. PubMed ID: 16421565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How 'spin ice' freezes.
    Snyder J; Slusky JS; Cava RJ; Schiffer P
    Nature; 2001 Sep; 413(6851):48-51. PubMed ID: 11544520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent excitations in a geometrically frustrated magnet.
    Lee SH; Broholm C; Ratcliff W; Gasparovic G; Huang Q; Kim TH; Cheong SW
    Nature; 2002 Aug; 418(6900):856-8. PubMed ID: 12192404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices.
    Pati SK; Rao CN
    J Chem Phys; 2005 Dec; 123(23):234703. PubMed ID: 16392940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field induced spin freezing and low temperature heat capacity of disordered pyrochlore oxide Ho
    Devi S; Elghandour A; Rüdiger K; Yadav CS
    J Phys Condens Matter; 2022 Mar; ():. PubMed ID: 35316800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin chirality on a two-dimensional frustrated lattice.
    Grohol D; Matan K; Cho JH; Lee SH; Lynn JW; Nocera DG; Lee YS
    Nat Mater; 2005 Apr; 4(4):323-8. PubMed ID: 15793572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum ice: a quantum Monte Carlo study.
    Shannon N; Sikora O; Pollmann F; Penc K; Fulde P
    Phys Rev Lett; 2012 Feb; 108(6):067204. PubMed ID: 22401117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.
    Morris DJ; Tennant DA; Grigera SA; Klemke B; Castelnovo C; Moessner R; Czternasty C; Meissner M; Rule KC; Hoffmann JU; Kiefer K; Gerischer S; Slobinsky D; Perry RS
    Science; 2009 Oct; 326(5951):411-4. PubMed ID: 19729617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degeneracy and criticality from emergent frustration in artificial spin ice.
    Chern GW; Morrison MJ; Nisoli C
    Phys Rev Lett; 2013 Oct; 111(17):177201. PubMed ID: 24206515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric frustration in buckled colloidal monolayers.
    Han Y; Shokef Y; Alsayed AM; Yunker P; Lubensky TC; Yodh AG
    Nature; 2008 Dec; 456(7224):898-903. PubMed ID: 19092926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pyrochlore family -- a potential panacea for the frustrated perovskite chemist.
    Weller MT; Hughes RW; Rooke J; Knee CS; Reading J
    Dalton Trans; 2004 Oct; (19):3032-41. PubMed ID: 15452627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of diisopropanolamine (dipaH3) in cluster dimerisation and polymerisation: from spin frustrated S= 5 FeIII 6 clusters to the novel 1-D covalent polymer of mixed valence [CoII3CoIII] tetramers.
    Jones LF; Jensen P; Moubaraki B; Cashion JD; Berry KJ; Murray KS
    Dalton Trans; 2005 Oct; (20):3344-52. PubMed ID: 16193153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of the expected zero-field muon relaxation rate in the geometrically frustrated rare earth pyrochlore Gd(2)Sn(2)O(7) antiferromagnet.
    McClarty PA; Cosman JN; Del Maestro AG; Gingras MJ
    J Phys Condens Matter; 2011 Apr; 23(16):164216. PubMed ID: 21471617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study on spin alignments in ferromagnetic heterospin chains with competing exchange interactions: a generalized ferrimagnetic system containing organic biradicals in the singlet ground state.
    Maekawa K; Shiomi D; Ise T; Sato K; Takui T
    J Phys Chem B; 2005 May; 109(19):9299-304. PubMed ID: 16852112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonmonotonic zero-point entropy in diluted spin ice.
    Ke X; Freitas RS; Ueland BG; Lau GC; Dahlberg ML; Cava RJ; Moessner R; Schiffer P
    Phys Rev Lett; 2007 Sep; 99(13):137203. PubMed ID: 17930629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-frustrated (VO)36+-triangle-sandwiching octadecatungstates as a new class of molecular magnets.
    Yamase T; Ishikawa E; Fukaya K; Nojiri H; Taniguchi T; Atake T
    Inorg Chem; 2004 Dec; 43(25):8150-7. PubMed ID: 15578855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-ice physics in cadmium cyanide.
    Coates CS; Baise M; Schmutzler A; Simonov A; Makepeace JW; Seel AG; Smith RI; Playford HY; Keen DA; Siegel R; Senker J; Slater B; Goodwin AL
    Nat Commun; 2021 Apr; 12(1):2272. PubMed ID: 33859176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first proton NMR imaging of ice: stray-field imaging and relaxation studies.
    Nunes TG; Randall EW; Guillot G
    Solid State Nucl Magn Reson; 2007 Oct; 32(2):59-65. PubMed ID: 17905572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.