BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 11711676)

  • 1. Lack of acrosome formation in Hrb-deficient mice.
    Kang-Decker N; Mantchev GT; Juneja SC; McNiven MA; van Deursen JM
    Science; 2001 Nov; 294(5546):1531-3. PubMed ID: 11711676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b- containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids.
    Kierszenbaum AL; Tres LL; Rivkin E; Kang-Decker N; van Deursen JM
    Biol Reprod; 2004 May; 70(5):1400-10. PubMed ID: 14724135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mouse model of familial oligoasthenoteratozoospermia.
    Juneja SC; van Deursen JM
    Hum Reprod; 2005 Apr; 20(4):881-93. PubMed ID: 15705627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of acrosome formation in mice lacking a Golgi protein, GOPC.
    Yao R; Ito C; Natsume Y; Sugitani Y; Yamanaka H; Kuretake S; Yanagida K; Sato A; Toshimori K; Noda T
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11211-6. PubMed ID: 12149515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin and assembly of a zona pellucida binding protein, IAM38, during spermiogenesis.
    Yu Y; Vanhorne J; Oko R
    Microsc Res Tech; 2009 Aug; 72(8):558-65. PubMed ID: 19204925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficiency in the omega-3 fatty acid pathway results in failure of acrosome biogenesis in mice.
    Roqueta-Rivera M; Abbott TL; Sivaguru M; Hess RA; Nakamura MT
    Biol Reprod; 2011 Oct; 85(4):721-32. PubMed ID: 21653892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An endoplasmic reticulum protein, calreticulin, is transported into the acrosome of rat sperm.
    Nakamura M; Moriya M; Baba T; Michikawa Y; Yamanobe T; Arai K; Okinaga S; Kobayashi T
    Exp Cell Res; 1993 Mar; 205(1):101-10. PubMed ID: 8453984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RIM-BP3 is a manchette-associated protein essential for spermiogenesis.
    Zhou J; Du YR; Qin WH; Hu YG; Huang YN; Bao L; Han D; Mansouri A; Xu GL
    Development; 2009 Feb; 136(3):373-82. PubMed ID: 19091768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport.
    Wu AT; Sutovsky P; Xu W; van der Spoel AC; Platt FM; Oko R
    Dev Biol; 2007 Dec; 312(2):471-83. PubMed ID: 17988661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexin-I-deficient sperm are subfertile due to a defect in zona pellucida penetration.
    Zhao L; Reim K; Miller DJ
    Reproduction; 2008 Sep; 136(3):323-34. PubMed ID: 18577553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of microtubule-dependent membrane trafficking in acrosomal biogenesis.
    Huang WP; Ho HC
    Cell Tissue Res; 2006 Mar; 323(3):495-503. PubMed ID: 16341711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insertional mutation that causes acrosomal hypo-development: its relationship to sperm head shaping.
    Russell LD; Ying L; Overbeek PA
    Anat Rec; 1994 Apr; 238(4):437-53. PubMed ID: 8192241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TMF/ARA160: A key regulator of sperm development.
    Lerer-Goldshtein T; Bel S; Shpungin S; Pery E; Motro B; Goldstein RS; Bar-Sheshet SI; Breitbart H; Nir U
    Dev Biol; 2010 Dec; 348(1):12-21. PubMed ID: 20691678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion failure of dense-cored proacrosomal vesicles in an inducible mouse model of male infertility.
    Oko R; Donald A; Xu W; van der Spoel AC
    Cell Tissue Res; 2011 Oct; 346(1):119-34. PubMed ID: 21987219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus.
    Pierre V; Martinez G; Coutton C; Delaroche J; Yassine S; Novella C; Pernet-Gallay K; Hennebicq S; Ray PF; Arnoult C
    Development; 2012 Aug; 139(16):2955-65. PubMed ID: 22764053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule configurations and post-translational alpha-tubulin modifications during mammalian spermatogenesis.
    Moreno RD; Schatten G
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):235-46. PubMed ID: 10962478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport.
    Yang WX; Sperry AO
    Biol Reprod; 2003 Nov; 69(5):1719-29. PubMed ID: 12826589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of classical bipartite/karyopherin nuclear import pathway components in acrosomal trafficking and assembly during bovine and murid spermiogenesis.
    Tran MH; Aul RB; Xu W; van der Hoorn FA; Oko R
    Biol Reprod; 2012 Mar; 86(3):84. PubMed ID: 22156475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germ cell-specific localization of immunoreactive riboflavin carrier protein in the male golden hamster: appearance during spermatogenesis and role in sperm function.
    Sreekumar A; Acharya KK; Lalitha HS; Indi SS; Bali P; Seshagiri PB
    Reproduction; 2005 May; 129(5):577-87. PubMed ID: 15855621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation.
    Yoshinaga K; Toshimori K
    Microsc Res Tech; 2003 May; 61(1):39-45. PubMed ID: 12672121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.