These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11712201)

  • 1. [Studies on development of composite biomaterials for reconstruction of the larynx].
    Pamuła E; Konieczna B; Błazewicz M
    Polim Med; 2001; 31(1-2):39-44. PubMed ID: 11712201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Carbon fiber reinforced polysulfone--a new implant material].
    Claes L
    Biomed Tech (Berl); 1989 Dec; 34(12):315-9. PubMed ID: 2620085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses.
    Gershon B; Cohn D; Marom G
    Biomaterials; 1990 Oct; 11(8):548-52. PubMed ID: 2279055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient composite materials for artificial intervertebral discs.
    Migacz K; Chłopek J; Morawska-Chochół A; Ambroziak M
    Acta Bioeng Biomech; 2014; 16(3):3-12. PubMed ID: 25306938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biocompatibility of polyetheretherketone and polysulfone composites.
    Wenz LM; Merritt K; Brown SA; Moet A; Steffee AD
    J Biomed Mater Res; 1990 Feb; 24(2):207-15. PubMed ID: 2329115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Carbon fiber-reinforced polysulfone as an implant material. Physical properties and biological studies].
    Foerster W; Hüttner W; Kirschner H
    Dtsch Z Mund Kiefer Gesichtschir; 1984; 8(6):437-40. PubMed ID: 6398151
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material.
    Boeree NR; Dove J; Cooper JJ; Knowles J; Hastings GW
    Biomaterials; 1993 Aug; 14(10):793-6. PubMed ID: 8218731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites.
    Oréfice R; West J; Latorre G; Hench L; Brennan A
    Biomacromolecules; 2010 Mar; 11(3):657-65. PubMed ID: 20108891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of FRP composite structural biomaterials: fatigue strength of the fiber/matrix interfacial bond in simulated in vivo environments.
    Latour RA; Black J
    J Biomed Mater Res; 1993 Oct; 27(10):1281-91. PubMed ID: 8245042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.
    Latour RA; Black J
    J Biomed Mater Res; 1992 May; 26(5):593-606. PubMed ID: 1512281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-modulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants.
    Spector M; Michno MJ; Smarook WH; Kwiatkowski GT
    J Biomed Mater Res; 1978 Sep; 12(5):665-77. PubMed ID: 701302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing, properties, and in vitro bioactivity of polysulfone-bioactive glass composites.
    Oréfice R; Clark A; West J; Brennan A; Hench L
    J Biomed Mater Res A; 2007 Mar; 80(3):565-80. PubMed ID: 17031819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of polysulfone-dicalcium silicate composite films.
    Cheng W; Chang J
    J Biomater Appl; 2006 Apr; 20(4):361-76. PubMed ID: 16443620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dialysis environment on the mechanical behaviour of hollow polymeric fibers.
    Konduk BA; Ucisik AH
    Med J Malaysia; 2004 May; 59 Suppl B():53-4. PubMed ID: 15468815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Current requirements for polymeric biomaterials in ear, nose and throat medicine].
    Sternberg K
    Laryngorhinootologie; 2009 May; 88 Suppl 1():S1-11. PubMed ID: 19353451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date.
    D'Alpino PH; Vismara MV; Mello LM; Di Hipólito V; González AH; Graeff CF
    J Mech Behav Biomed Mater; 2014 Jul; 35():59-69. PubMed ID: 24747096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicone rubber-hydrogel composites as polymeric biomaterials. IX. Composites containing powdery polyacrylamide hydrogel.
    Hron P; Slechtová J; Smetana K; Dvoránková B; Lopour P
    Biomaterials; 1997 Aug; 18(15):1069-73. PubMed ID: 9239469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices.
    Brown SA; Hastings RS; Mason JJ; Moet A
    Biomaterials; 1990 Oct; 11(8):541-7. PubMed ID: 2149076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous-surfaced metallic implants for orthopedic applications.
    Pilliar RM
    J Biomed Mater Res; 1987 Apr; 21(A1 Suppl):1-33. PubMed ID: 3553195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of biomaterials.
    Schindhelm K; Milthorpe BK
    Australas Phys Eng Sci Med; 1986; 9(1):29-32. PubMed ID: 3729817
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.