These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 11712239)
21. Reflections about the functional potential of legume proteins. A review. Schwenke KD Nahrung; 2001 Oct; 45(6):377-81. PubMed ID: 11712234 [TBL] [Abstract][Full Text] [Related]
22. Functional properties, lipoxygenase activity, and health aspects of Lupinus albus protein isolates. Yoshie-Stark Y; Bez J; Wada Y; Wäsche A J Agric Food Chem; 2004 Dec; 52(25):7681-9. PubMed ID: 15675820 [TBL] [Abstract][Full Text] [Related]
23. Lupin allergy: a hidden killer in the home. Sanz ML; de Las Marinas MD; Fernández J; Gamboa PM Clin Exp Allergy; 2010 Oct; 40(10):1461-6. PubMed ID: 20701610 [TBL] [Abstract][Full Text] [Related]
24. Can we improve the nutritional quality of legume seeds? Wang TL; Domoney C; Hedley CL; Casey R; Grusak MA Plant Physiol; 2003 Mar; 131(3):886-91. PubMed ID: 12644641 [No Abstract] [Full Text] [Related]
25. Composition and functional properties of Lupinus campestris protein isolates. Rodríguez-Ambriz SL; Martínez-Ayala AL; Millán F; Dávila-Ortíz G Plant Foods Hum Nutr; 2005 Sep; 60(3):99-107. PubMed ID: 16187011 [TBL] [Abstract][Full Text] [Related]
26. Characterization of IgE binding to lupin, peanut and almond with sera from lupin-allergic patients. Holden L; Sletten GB; Lindvik H; Faeste CK; Dooper MM Int Arch Allergy Immunol; 2008; 146(4):267-76. PubMed ID: 18362472 [TBL] [Abstract][Full Text] [Related]
27. A novel and efficient and low-cost methodology for purification of Macrotyloma axillare (Leguminosae) seed lectin. de Santana MA; Santos AM; Oliveira ME; de Oliveira JS; Baba EH; Santoro MM; de Andrade MH Int J Biol Macromol; 2008 Nov; 43(4):352-8. PubMed ID: 18703082 [TBL] [Abstract][Full Text] [Related]
28. Isolation and properties of a Kunitz-type protein inhibitor obtained from Pithecellobium dulce seeds. Delgado-Vargas F; López-Valdés HE; Valdés-Rodríguez S; Blanco-Labra A; Chagolla-López A; López-Valenzuela Ede J J Agric Food Chem; 2004 Oct; 52(20):6115-21. PubMed ID: 15453675 [TBL] [Abstract][Full Text] [Related]
29. Functional properties of acetylated and succinylated cowpea protein concentrate and effect of enzymatic hydrolysis on solubility. Mune Mune MA; Minka SR; Mbome IL Int J Food Sci Nutr; 2011 Jun; 62(4):310-7. PubMed ID: 21271839 [TBL] [Abstract][Full Text] [Related]
30. A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry. Brambilla F; Resta D; Isak I; Zanotti M; Arnoldi A Proteomics; 2009 Jan; 9(2):272-86. PubMed ID: 19105171 [TBL] [Abstract][Full Text] [Related]
31. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Kudre TG; Benjakul S; Kishimura H J Sci Food Agric; 2013 Aug; 93(10):2429-36. PubMed ID: 23400865 [TBL] [Abstract][Full Text] [Related]
32. Interactions of glycinin with plant phenols--influence on chemical properties and proteolytic degradation of the proteins. Kroll J; Rawel HM; Rohn S; Czajka D Nahrung; 2001 Oct; 45(6):388-9. PubMed ID: 11712237 [TBL] [Abstract][Full Text] [Related]
33. Preliminary approaches for the development of a high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method for the detection and label-free semi-quantitation of the main storage proteins of Lupinus albus in foods. Locati D; Morandi S; Zanotti M; Arnoldi A Rapid Commun Mass Spectrom; 2006; 20(8):1305-16. PubMed ID: 16548055 [TBL] [Abstract][Full Text] [Related]
34. Characterization of the proteins from Vigna unguiculata seeds. Freitas RL; Teixeira AR; Ferreira RB J Agric Food Chem; 2004 Mar; 52(6):1682-7. PubMed ID: 15030230 [TBL] [Abstract][Full Text] [Related]
35. Extraction, isolation, and characterization of globulin proteins from Lupinus albus. Nadal P; Canela N; Katakis I; O'Sullivan CK J Agric Food Chem; 2011 Mar; 59(6):2752-8. PubMed ID: 21332201 [TBL] [Abstract][Full Text] [Related]
36. Analysis of lupin seed protein digestibility using gel electrophoresis and immunoblots. Tai HH; Bush RS J Anim Sci; 1997 Jul; 75(7):1934-40. PubMed ID: 9222852 [TBL] [Abstract][Full Text] [Related]
37. Identification of a specific IgE-binding protein from narrow-leafed lupin (L. Angustifolius) seeds. Kłos P; Poreba E; Springer E; Lampart-Szczapa E; Goździcka Józefiak A J Food Sci; 2010; 75(1):H39-43. PubMed ID: 20492176 [TBL] [Abstract][Full Text] [Related]
38. Thermal stabilities of lupin seed conglutin gamma protomers and tetramers. Duranti M; Sessa F; Scarafoni A; Bellini T; Dallocchio F J Agric Food Chem; 2000 Apr; 48(4):1118-23. PubMed ID: 10775359 [TBL] [Abstract][Full Text] [Related]
39. Two-dimensional electrophoresis and western-blotting analyses with anti Ara h 3 basic subunit IgG evidence the cross-reacting polypeptides of Arachis hypogaea, Glycine max, and Lupinus albus seed proteomes. Magni C; Ballabio C; Restani P; Sironi E; Scarafoni A; Poiesi C; Duranti M J Agric Food Chem; 2005 Mar; 53(6):2275-81. PubMed ID: 15769168 [TBL] [Abstract][Full Text] [Related]
40. Extraction, purification by cation exchange supermacroporous cryogel and physico-chemical characterization of γ-conglutin from lupin seeds (Lupinus albus L.). da Silva RM; Guimarães VM; Veríssimo LAA; Vidigal MCTR; Minim VPR; Minim LA J Sep Sci; 2022 Jan; 45(2):401-410. PubMed ID: 34687586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]