These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 11712989)
1. Snakes and ladders: the role of temporal modulation in visual contour integration. Bex PJ; Simmers AJ; Dakin SC Vision Res; 2001 Dec; 41(27):3775-82. PubMed ID: 11712989 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of snakes and ladders. May KA; Hess RF J Vis; 2007 Sep; 7(12):13.1-9. PubMed ID: 17997655 [TBL] [Abstract][Full Text] [Related]
3. The integration of straight contours (snakes and ladders): The role of spatial arrangement, spatial frequency and spatial phase. Bellacosa Marotti R; Pavan A; Casco C Vision Res; 2012 Oct; 71():44-52. PubMed ID: 22902640 [TBL] [Abstract][Full Text] [Related]
4. Effects of element separation and carrier wavelength on detection of snakes and ladders: implications for models of contour integration. May KA; Hess RF J Vis; 2008 Oct; 8(13):4.1-23. PubMed ID: 19146334 [TBL] [Abstract][Full Text] [Related]
5. Ladder contours are undetectable in the periphery: a crowding effect? May KA; Hess RF J Vis; 2007 Oct; 7(13):9.1-15. PubMed ID: 17997637 [TBL] [Abstract][Full Text] [Related]
6. Response priming evidence for feedforward processing of snake contours but not of ladder contours and textures. Schmidt F; Vancleef K Vision Res; 2016 Sep; 126():174-182. PubMed ID: 25771400 [TBL] [Abstract][Full Text] [Related]
7. Component processes in contour integration: a direct comparison between snakes and ladders in a detection and a shape discrimination task. Vancleef K; Wagemans J Vision Res; 2013 Nov; 92():39-46. PubMed ID: 24051198 [TBL] [Abstract][Full Text] [Related]
8. The role of crowding in contextual influences on contour integration. Robol V; Casco C; Dakin SC J Vis; 2012 Jul; 12(7):3. PubMed ID: 22776847 [TBL] [Abstract][Full Text] [Related]
10. Grouping local orientation and direction signals to extract spatial contours: empirical tests of "association field" models of contour integration. Ledgeway T; Hess RF; Geisler WS Vision Res; 2005 Sep; 45(19):2511-22. PubMed ID: 15890381 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric global motion integration in drifting Gabor arrays. Rider AT; McOwan PW; Johnston A J Vis; 2014 Jul; 14(8):18. PubMed ID: 25057943 [TBL] [Abstract][Full Text] [Related]
12. The Drifting Edge Illusion: a stationary edge abutting an oriented drifting grating appears to move because of the 'other aperture problem'. Caplovitz GP; Paymer NA; Tse PU Vision Res; 2008 Oct; 48(22):2403-14. PubMed ID: 18694778 [TBL] [Abstract][Full Text] [Related]
13. Distinct position assignment mechanisms revealed by cross-order motion. Pavan A; Mather G Vision Res; 2008 Sep; 48(21):2260-8. PubMed ID: 18675290 [TBL] [Abstract][Full Text] [Related]
15. The electrophysiological correlate of contour integration is modulated by task demands. Mathes B; Trenner D; Fahle M Brain Res; 2006 Oct; 1114(1):98-112. PubMed ID: 16945355 [TBL] [Abstract][Full Text] [Related]
16. The spatial frequency and orientation selectivity of the mechanisms that extract motion-defined contours. Ledgeway T; Hess RF Vision Res; 2006 Feb; 46(4):568-78. PubMed ID: 16182334 [TBL] [Abstract][Full Text] [Related]
19. The detection of direction-defined and speed-defined spatial contours: one mechanism or two? Hess RF; Ledgeway T Vision Res; 2003 Mar; 43(5):597-606. PubMed ID: 12595005 [TBL] [Abstract][Full Text] [Related]
20. Contour integration with corners. Persike M; Meinhardt G Vision Res; 2016 Oct; 127():132-140. PubMed ID: 27542687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]