These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 11713237)
1. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Parikka V; Lehenkari P; Sassi ML; Halleen J; Risteli J; Härkönen P; Väänänen HK Endocrinology; 2001 Dec; 142(12):5371-8. PubMed ID: 11713237 [TBL] [Abstract][Full Text] [Related]
2. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. Everts V; Korper W; Hoeben KA; Jansen ID; Bromme D; Cleutjens KB; Heeneman S; Peters C; Reinheckel T; Saftig P; Beertsen W J Bone Miner Res; 2006 Sep; 21(9):1399-408. PubMed ID: 16939398 [TBL] [Abstract][Full Text] [Related]
3. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Shorey S; Heersche JN; Manolson MF Bone; 2004 Oct; 35(4):909-17. PubMed ID: 15454098 [TBL] [Abstract][Full Text] [Related]
4. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274 [TBL] [Abstract][Full Text] [Related]
5. Human mesenchymal stem cell derived osteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases. Parikka V; Väänänen A; Risteli J; Salo T; Sorsa T; Väänänen HK; Lehenkari P Matrix Biol; 2005 Sep; 24(6):438-47. PubMed ID: 16098718 [TBL] [Abstract][Full Text] [Related]
6. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. Stroup GB; Lark MW; Veber DF; Bhattacharyya A; Blake S; Dare LC; Erhard KF; Hoffman SJ; James IE; Marquis RW; Ru Y; Vasko-Moser JA; Smith BR; Tomaszek T; Gowen M J Bone Miner Res; 2001 Oct; 16(10):1739-46. PubMed ID: 11585335 [TBL] [Abstract][Full Text] [Related]
7. Regulation and enzymatic basis of bone resorption by human osteoclasts. Fuller K; Kirstein B; Chambers TJ Clin Sci (Lond); 2007 Jun; 112(11):567-75. PubMed ID: 17241109 [TBL] [Abstract][Full Text] [Related]
8. Matrix collagen of devitalized bone is resistant to osteoclastic bone resorption. Shimizu H; Sakamoto S; Sakamoto M Connect Tissue Res; 1989; 20(1-4):169-75. PubMed ID: 2612150 [TBL] [Abstract][Full Text] [Related]
9. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. Wilson SR; Peters C; Saftig P; Brömme D J Biol Chem; 2009 Jan; 284(4):2584-92. PubMed ID: 19028686 [TBL] [Abstract][Full Text] [Related]
10. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking. Leung P; Pickarski M; Zhuo Y; Masarachia PJ; Duong LT Bone; 2011 Oct; 49(4):623-35. PubMed ID: 21718816 [TBL] [Abstract][Full Text] [Related]
11. Osteoclast polarization is not required for degradation of bone matrix in rachitic FGF23 transgenic mice. Hollberg K; Marsell R; Norgård M; Larsson T; Jonsson KB; Andersson G Bone; 2008 Jun; 42(6):1111-21. PubMed ID: 18346951 [TBL] [Abstract][Full Text] [Related]
12. Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. Nishi Y; Atley L; Eyre DE; Edelson JG; Superti-Furga A; Yasuda T; Desnick RJ; Gelb BD J Bone Miner Res; 1999 Nov; 14(11):1902-8. PubMed ID: 10571690 [TBL] [Abstract][Full Text] [Related]
13. Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Sassi ML; Eriksen H; Risteli L; Niemi S; Mansell J; Gowen M; Risteli J Bone; 2000 Apr; 26(4):367-73. PubMed ID: 10719280 [TBL] [Abstract][Full Text] [Related]
14. The migration of purified osteoclasts through collagen is inhibited by matrix metalloproteinase inhibitors. Sato T; Foged NT; Delaissé JM J Bone Miner Res; 1998 Jan; 13(1):59-66. PubMed ID: 9443791 [TBL] [Abstract][Full Text] [Related]
15. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. Everts V; Delaissé JM; Korper W; Niehof A; Vaes G; Beertsen W J Cell Physiol; 1992 Feb; 150(2):221-31. PubMed ID: 1734028 [TBL] [Abstract][Full Text] [Related]
16. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. Everts V; Delaissé JM; Korper W; Beertsen W J Bone Miner Res; 1998 Sep; 13(9):1420-30. PubMed ID: 9738514 [TBL] [Abstract][Full Text] [Related]
17. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. Everts V; Korper W; Jansen DC; Steinfort J; Lammerse I; Heera S; Docherty AJ; Beertsen W FASEB J; 1999 Jul; 13(10):1219-30. PubMed ID: 10385612 [TBL] [Abstract][Full Text] [Related]
18. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. Garnero P; Ferreras M; Karsdal MA; Nicamhlaoibh R; Risteli J; Borel O; Qvist P; Delmas PD; Foged NT; Delaissé JM J Bone Miner Res; 2003 May; 18(5):859-67. PubMed ID: 12733725 [TBL] [Abstract][Full Text] [Related]
19. Cystatin B as an intracellular modulator of bone resorption. Laitala-Leinonen T; Rinne R; Saukko P; Väänänen HK; Rinne A Matrix Biol; 2006 Apr; 25(3):149-57. PubMed ID: 16321512 [TBL] [Abstract][Full Text] [Related]