BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11713293)

  • 1. Normal light response, photoreceptor integrity, and rhodopsin dephosphorylation in mice lacking both protein phosphatases with EF hands (PPEF-1 and PPEF-2).
    Ramulu P; Kennedy M; Xiong WH; Williams J; Cowan M; Blesh D; Yau KW; Hurley JB; Nathans J
    Mol Cell Biol; 2001 Dec; 21(24):8605-14. PubMed ID: 11713293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a conserved family of protein serine/threonine phosphatases homologous to Drosophila retinal degeneration C.
    Sherman PM; Sun H; Macke JP; Williams J; Smallwood PM; Nathans J
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11639-44. PubMed ID: 9326663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A G protein-coupled receptor phosphatase required for rhodopsin function.
    Vinós J; Jalink K; Hardy RW; Britt SG; Zuker CS
    Science; 1997 Aug; 277(5326):687-90. PubMed ID: 9235891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of the three Drosophila retinal degeneration C (RDGC) protein phosphatase isoforms.
    Voolstra O; Strauch L; Mayer M; Huber A
    PLoS One; 2018; 13(9):e0204933. PubMed ID: 30265717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin.
    Lee SJ; Montell C
    Neuron; 2001 Dec; 32(6):1097-106. PubMed ID: 11754840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility and subcellular localization of the three Drosophila RDGC phosphatase variants are determined by acylation.
    Strauch L; Pfannstiel J; Huber A; Voolstra O
    FEBS Lett; 2018 Jul; 592(14):2403-2413. PubMed ID: 29920663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel human serine-threonine phosphatase related to the Drosophila retinal degeneration C (rdgC) gene is selectively expressed in sensory neurons of neural crest origin.
    Montini E; Rugarli EI; Van de Vosse E; Andolfi G; Mariani M; Puca AA; Consalez GG; den Dunnen JT; Ballabio A; Franco B
    Hum Mol Genet; 1997 Jul; 6(7):1137-45. PubMed ID: 9215685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PPEF/PP7 protein Ser/Thr phosphatases.
    Andreeva AV; Kutuzov MA
    Cell Mol Life Sci; 2009 Oct; 66(19):3103-10. PubMed ID: 19662497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of constant-light-induced blindness but not retinal degeneration by inhibition of the rhodopsin degradation pathway.
    Lee SJ; Montell C
    Curr Biol; 2004 Dec; 14(23):2076-85. PubMed ID: 15589149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-driven translocation of the protein phosphatase 2A complex regulates light/dark dephosphorylation of phosducin and rhodopsin.
    Brown BM; Carlson BL; Zhu X; Lolley RN; Craft CM
    Biochemistry; 2002 Nov; 41(46):13526-38. PubMed ID: 12427013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila.
    Kiselev A; Socolich M; Vinós J; Hardy RW; Zuker CS; Ranganathan R
    Neuron; 2000 Oct; 28(1):139-52. PubMed ID: 11086990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged rhodopsin phosphorylation in light-induced retinal degeneration in rat models.
    Ishikawa F; Ohguro H; Ohguro I; Yamazaki H; Mamiya K; Metoki T; Ito T; Yokoi Y; Nakazawa M
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5204-11. PubMed ID: 17122104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Bcl-2 or Bcl-XL transgenes and photoreceptor degeneration.
    Joseph RM; Li T
    Invest Ophthalmol Vis Sci; 1996 Nov; 37(12):2434-46. PubMed ID: 8933760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant.
    Steele F; O'Tousa JE
    Neuron; 1990 Jun; 4(6):883-90. PubMed ID: 2361011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of the postnatal rat retina in vitro: quantitative RT-PCR analyses of mRNA expression for photoreceptor proteins.
    Liljekvist-Larsson I; Törngren M; Abrahamson M; Johansson K
    Mol Vis; 2003 Dec; 9():657-64. PubMed ID: 14685147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digoxin-induced retinal degeneration depends on rhodopsin.
    Landfried B; Samardzija M; Barben M; Schori C; Klee K; Storti F; Grimm C
    Cell Death Dis; 2017 Mar; 8(3):e2670. PubMed ID: 28300845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exclusion of PPEF as the gene causing X-linked juvenile retinoschisis.
    van de Vosse E; Franco B; van der Bent P; Montini E; Orth U; Hanauer A; Tijmes N; van Ommen GJ; Ballabio A; den Dunnen JT; Bergen AA
    Hum Genet; 1997 Dec; 101(2):235-7. PubMed ID: 9402977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina.
    Rohrer B; Korenbrot JI; LaVail MM; Reichardt LF; Xu B
    J Neurosci; 1999 Oct; 19(20):8919-30. PubMed ID: 10516311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.