These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 11713649)

  • 1. Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone.
    Román Y; Alfonso A; Louzao MC; Vieytes MR; Botana LM
    Pflugers Arch; 2001 Nov; 443(2):234-9. PubMed ID: 11713649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice.
    Gouyon F; Caillaud L; Carriere V; Klein C; Dalet V; Citadelle D; Kellett GL; Thorens B; Leturque A; Brot-Laroche E
    J Physiol; 2003 Nov; 552(Pt 3):823-32. PubMed ID: 12937289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and histochemical localization of the rat intestinal Na(+)-D-glucose cotransporter by monoclonal antibodies.
    Haase W; Heitmann K; Friese W; Ollig D; Koepsell H
    Eur J Cell Biol; 1990 Aug; 52(2):297-309. PubMed ID: 2081531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement.
    Zou C; Wang Y; Shen Z
    J Biochem Biophys Methods; 2005 Sep; 64(3):207-15. PubMed ID: 16182371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells.
    Etxeberria E; González P; Tomlinson P; Pozueta-Romero J
    J Exp Bot; 2005 Jul; 56(417):1905-12. PubMed ID: 15911561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time method of imaging glucose uptake in single, living mammalian cells.
    Yamada K; Saito M; Matsuoka H; Inagaki N
    Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate.
    Moran AW; Al-Rammahi MA; Arora DK; Batchelor DJ; Coulter EA; Ionescu C; Bravo D; Shirazi-Beechey SP
    Br J Nutr; 2010 Sep; 104(5):647-55. PubMed ID: 20385036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog.
    Lloyd PG; Hardin CD; Sturek M
    Physiol Res; 1999; 48(6):401-10. PubMed ID: 10783904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose.
    Yamamoto T; Tanaka S; Suga S; Watanabe S; Nagatomo K; Sasaki A; Nishiuchi Y; Teshima T; Yamada K
    Bioorg Med Chem Lett; 2011 Jul; 21(13):4088-96. PubMed ID: 21636274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescence method for determination of glucose transport by intestinal BBMV of common carp.
    Yang LP; Yan X; Zheng WJ; Hu JY; Zhang YR; Qin CB; Meng XL; Lu RH; Chen F; Xie DZ; Nie GX
    Anal Biochem; 2017 Nov; 537():20-25. PubMed ID: 28847591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular characterization of glucose uptake in coronary endothelial cells.
    Gaudreault N; Scriven DR; Laher I; Moore ED
    Microvasc Res; 2008 Jan; 75(1):73-82. PubMed ID: 17531273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561.
    Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK
    Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometric analysis of glucose transport by rat brain cells.
    Aller CB; Ehmann S; Gilman-Sachs A; Snyder AK
    Cytometry; 1997 Mar; 27(3):262-8. PubMed ID: 9041115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil.
    Tomimatsu T; Horie T
    Chem Biol Interact; 2005 Aug; 155(3):129-39. PubMed ID: 15996645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1.
    Walgren RA; Lin JT; Kinne RK; Walle T
    J Pharmacol Exp Ther; 2000 Sep; 294(3):837-43. PubMed ID: 10945831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of facilitated diffusion in glucose transport across the apical membrane of enterocytes].
    Gromova LV; Grefner NM; Gruzdkov AA; Komissarchik IaIu
    Ross Fiziol Zh Im I M Sechenova; 2006 Mar; 92(3):362-73. PubMed ID: 16739646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines.
    Millon SR; Ostrander JH; Brown JQ; Raheja A; Seewaldt VL; Ramanujam N
    Breast Cancer Res Treat; 2011 Feb; 126(1):55-62. PubMed ID: 20390344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OCTN3: A Na+-independent L-carnitine transporter in enterocytes basolateral membrane.
    Durán JM; Peral MJ; Calonge ML; Ilundáin AA
    J Cell Physiol; 2005 Mar; 202(3):929-35. PubMed ID: 15389639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.