BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 11713655)

  • 1. Topology of the human skeletal muscle chloride channel hClC-1 probed with hydrophilic epitope insertion.
    Kuchenbecker M; Schu B; Kürz L; Rüdel R
    Pflugers Arch; 2001 Nov; 443(2):280-8. PubMed ID: 11713655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional study of cytoplasmic loops of human skeletal muscle chloride channel, hClC-1.
    Ma L; Rychkov GY; Bretag AH
    Int J Biochem Cell Biol; 2009 Jun; 41(6):1402-9. PubMed ID: 19135547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human ClC-4 protein, a member of the CLC chloride channel/transporter family, is localized to the endoplasmic reticulum by its N-terminus.
    Okkenhaug H; Weylandt KH; Carmena D; Wells DJ; Higgins CF; Sardini A
    FASEB J; 2006 Nov; 20(13):2390-2. PubMed ID: 17023393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers.
    Suzuki T; Rai T; Hayama A; Sohara E; Suda S; Itoh T; Sasaki S; Uchida S
    J Cell Physiol; 2006 Mar; 206(3):792-8. PubMed ID: 16222710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains.
    Banerjee A; Swaan PW
    Biochemistry; 2006 Jan; 45(3):943-53. PubMed ID: 16411770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions.
    Covitz KM; Amidon GL; Sadée W
    Biochemistry; 1998 Oct; 37(43):15214-21. PubMed ID: 9790685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of novel isoforms of the CIC-1 chloride channel in astrocytic glial cells in vitro.
    Zhang XD; Morishima S; Ando-Akatsuka Y; Takahashi N; Nabekura T; Inoue H; Shimizu T; Okada Y
    Glia; 2004 Jul; 47(1):46-57. PubMed ID: 15139012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit stoichiometry of human muscle chloride channels.
    Fahlke C; Knittle T; Gurnett CA; Campbell KP; George AL
    J Gen Physiol; 1997 Jan; 109(1):93-104. PubMed ID: 8997668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClC-1 chloride channel: Matching its properties to a role in skeletal muscle.
    Aromataris EC; Rychkov GY
    Clin Exp Pharmacol Physiol; 2006 Nov; 33(11):1118-23. PubMed ID: 17042925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of carboxyl tail function in the skeletal muscle Cl- channel hClC-1.
    Ma L; Rychkov GY; Hughes BP; Bretag AH
    Biochem J; 2008 Jul; 413(1):61-9. PubMed ID: 18321245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells.
    Tonini R; Ferroni A; Valenzuela SM; Warton K; Campbell TJ; Breit SN; Mazzanti M
    FASEB J; 2000 Jun; 14(9):1171-8. PubMed ID: 10834939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional complementation of truncated human skeletal-muscle chloride channel (hClC-1) using carboxyl tail fragments.
    Wu W; Rychkov GY; Hughes BP; Bretag AH
    Biochem J; 2006 Apr; 395(1):89-97. PubMed ID: 16321142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding ion channel biology using epitope tags: progress, pitfalls, and promise.
    Maue RA
    J Cell Physiol; 2007 Dec; 213(3):618-25. PubMed ID: 17849449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chloride channel widely expressed in epithelial and non-epithelial cells.
    Thiemann A; Gründer S; Pusch M; Jentsch TJ
    Nature; 1992 Mar; 356(6364):57-60. PubMed ID: 1311421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion permeation in human ClC-4 channels.
    Hebeisen S; Heidtmann H; Cosmelli D; Gonzalez C; Poser B; Latorre R; Alvarez O; Fahlke C
    Biophys J; 2003 Apr; 84(4):2306-18. PubMed ID: 12668439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel.
    Niemeyer MI; Cid LP; Zúñiga L; Catalán M; Sepúlveda FV
    J Physiol; 2003 Dec; 553(Pt 3):873-9. PubMed ID: 14617675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-forming segments in voltage-gated chloride channels.
    Fahlke C; Yu HT; Beck CL; Rhodes TH; George AL
    Nature; 1997 Dec; 390(6659):529-32. PubMed ID: 9394005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure and function of ClC chloride channels].
    Uchida S
    Nihon Rinsho; 1996 Mar; 54(3):667-71. PubMed ID: 8904221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress.
    Wills NK; Weng T; Mo L; Hellmich HL; Yu A; Wang T; Buchheit S; Godley BF
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4247-55. PubMed ID: 11095622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of local structure in the D2/S1-S2 region of the rat skeletal muscle type 1 sodium channel using insertional mutagenesis.
    Kraner SD; Filatov GN; Sun W; Bannerman P; Lindstrom J; Barchi RL
    J Neurochem; 1998 Apr; 70(4):1628-35. PubMed ID: 9523580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.