BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11714264)

  • 1. Global disruption of the WASP autoinhibited structure on Cdc42 binding. Ligand displacement as a novel method for monitoring amide hydrogen exchange.
    Buck M; Xu W; Rosen MK
    Biochemistry; 2001 Nov; 40(47):14115-22. PubMed ID: 11714264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation.
    Rudolph MG; Bayer P; Abo A; Kuhlmann J; Vetter IR; Wittinghofer A
    J Biol Chem; 1998 Jul; 273(29):18067-76. PubMed ID: 9660763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein.
    Kim AS; Kakalis LT; Abdul-Manan N; Liu GA; Rosen MK
    Nature; 2000 Mar; 404(6774):151-8. PubMed ID: 10724160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK
    Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct binding of a fragment of the Wiskott-Aldrich syndrome protein to the C-terminal end of the anaphylatoxin C5a receptor.
    Tardif M; Brouchon L; Rabiet MJ; Boulay F
    Biochem J; 2003 Jun; 372(Pt 2):453-63. PubMed ID: 12600272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott-Aldrich syndrome protein.
    Leung DW; Rosen MK
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5685-90. PubMed ID: 15821030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bond swapping from a charge cloud allows flexible coordination of upstream signals through WASP: Multiple regulatory roles for the WASP basic region.
    Tetley GJN; Szeto A; Fountain AJ; Mott HR; Owen D
    J Biol Chem; 2018 Sep; 293(39):15136-15151. PubMed ID: 30104412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site.
    Zeng R; Cannon JL; Abraham RT; Way M; Billadeau DD; Bubeck-Wardenberg J; Burkhardt JK
    J Immunol; 2003 Aug; 171(3):1360-8. PubMed ID: 12874226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U).
    Cheng HC; Skehan BM; Campellone KG; Leong JM; Rosen MK
    Nature; 2008 Aug; 454(7207):1009-13. PubMed ID: 18650809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome.
    Aspenström P; Lindberg U; Hall A
    Curr Biol; 1996 Jan; 6(1):70-5. PubMed ID: 8805223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wiskott-Aldrich syndrome protein induces actin clustering without direct binding to Cdc42.
    Kato M; Miki H; Imai K; Nonoyama S; Suzuki T; Sasakawa C; Takenawa T
    J Biol Chem; 1999 Sep; 274(38):27225-30. PubMed ID: 10480940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP.
    Torres E; Rosen MK
    J Biol Chem; 2006 Feb; 281(6):3513-20. PubMed ID: 16293614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting.
    Buck M; Xu W; Rosen MK
    J Mol Biol; 2004 Apr; 338(2):271-85. PubMed ID: 15066431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate.
    Rohatgi R; Ho HY; Kirschner MW
    J Cell Biol; 2000 Sep; 150(6):1299-310. PubMed ID: 10995436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of Cdc42 bound to the GTPase binding domain of PAK.
    Morreale A; Venkatesan M; Mott HR; Owen D; Nietlispach D; Lowe PN; Laue ED
    Nat Struct Biol; 2000 May; 7(5):384-8. PubMed ID: 10802735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profilin enhances Cdc42-induced nucleation of actin polymerization.
    Yang C; Huang M; DeBiasio J; Pring M; Joyce M; Miki H; Takenawa T; Zigmond SH
    J Cell Biol; 2000 Sep; 150(5):1001-12. PubMed ID: 10973991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP.
    Park J; Sung JY; Park J; Song WJ; Chang S; Chung KC
    J Cell Sci; 2012 Jan; 125(Pt 1):67-80. PubMed ID: 22250195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis.
    Haddad E; Zugaza JL; Louache F; Debili N; Crouin C; Schwarz K; Fischer A; Vainchenker W; Bertoglio J
    Blood; 2001 Jan; 97(1):33-8. PubMed ID: 11133739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adapter protein CrkII regulates neuronal Wiskott-Aldrich syndrome protein, actin polymerization, and tension development during contractile stimulation of smooth muscle.
    Tang DD; Zhang W; Gunst SJ
    J Biol Chem; 2005 Jun; 280(24):23380-9. PubMed ID: 15834156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2.
    Tomasevic N; Jia Z; Russell A; Fujii T; Hartman JJ; Clancy S; Wang M; Beraud C; Wood KW; Sakowicz R
    Biochemistry; 2007 Mar; 46(11):3494-502. PubMed ID: 17302440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.