BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11714268)

  • 1. Thermodynamic differences among homologous thermophilic and mesophilic proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2001 Nov; 40(47):14152-65. PubMed ID: 11714268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal stabilities of reversible two-state proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2002 Apr; 41(17):5359-74. PubMed ID: 11969396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme.
    Beadle BM; Baase WA; Wilson DB; Gilkes NR; Shoichet BK
    Biochemistry; 1999 Feb; 38(8):2570-6. PubMed ID: 10029552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic L-arabinose isomerases: the effects of divalent metal ions on protein stability at elevated temperatures.
    Lee DW; Hong YH; Choe EA; Lee SJ; Kim SB; Lee HS; Oh JW; Shin HH; Pyun YR
    FEBS Lett; 2005 Feb; 579(5):1261-6. PubMed ID: 15710423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal unfolding of small proteins with SH3 domain folding pattern.
    Knapp S; Mattson PT; Christova P; Berndt KD; Karshikoff A; Vihinen M; Smith CI; Ladenstein R
    Proteins; 1998 May; 31(3):309-19. PubMed ID: 9593201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability of Taq DNA polymerase results from a reduced entropic folding penalty; identification of other thermophilic proteins with similar folding thermodynamics.
    Liu CC; LiCata VJ
    Proteins; 2014 May; 82(5):785-93. PubMed ID: 24174290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability.
    Kumar S; Nussinov R
    Biophys Chem; 2004 Nov; 111(3):235-46. PubMed ID: 15501567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of folding cores to the thermostabilities of two ribonucleases H.
    Robic S; Berger JM; Marqusee S
    Protein Sci; 2002 Feb; 11(2):381-9. PubMed ID: 11790848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature range of thermodynamic stability for the native state of reversible two-state proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2003 May; 42(17):4864-73. PubMed ID: 12718527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics simulations.
    Huang X; Zhou HX
    Biophys J; 2006 Oct; 91(7):2451-63. PubMed ID: 16844745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophilic adaptation of proteins.
    Sterner R; Liebl W
    Crit Rev Biochem Mol Biol; 2001; 36(1):39-106. PubMed ID: 11256505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.
    Lam SY; Yeung RC; Yu TH; Sze KH; Wong KB
    PLoS Biol; 2011 Mar; 9(3):e1001027. PubMed ID: 21423654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward the physical basis of thermophilic proteins: linking of enriched polar interactions and reduced heat capacity of unfolding.
    Zhou HX
    Biophys J; 2002 Dec; 83(6):3126-33. PubMed ID: 12496083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do thermophilic proteins and proteomes withstand high temperature?
    Sawle L; Ghosh K
    Biophys J; 2011 Jul; 101(1):217-27. PubMed ID: 21723832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The entropic nature of protein thermal stabilization.
    Khechinashvili NN; Capital Ka Cyrillicabanov AV; Kondratyev MS; Polozov RV
    J Biomol Struct Dyn; 2014; 32(9):1396-405. PubMed ID: 23879480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal stability of proteins does not correlate with the energy of intramolecular interactions.
    Khechinashvili NN; Volchkov SA; Kabanov AV; Barone G
    Biochim Biophys Acta; 2008 Nov; 1784(11):1830-4. PubMed ID: 18692606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues.
    Ratcliff K; Corn J; Marqusee S
    Biochemistry; 2009 Jun; 48(25):5890-8. PubMed ID: 19408959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.