BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11714273)

  • 1. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.
    Wilborn M; Free S; Ban A; Rudolph J
    Biochemistry; 2001 Nov; 40(47):14200-6. PubMed ID: 11714273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-specific Cdc25B phosphatase: in search of the catalytic acid.
    Chen W; Wilborn M; Rudolph J
    Biochemistry; 2000 Sep; 39(35):10781-9. PubMed ID: 10978163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2.
    Gabrielli BG; Clark JM; McCormack AK; Ellem KA
    J Biol Chem; 1997 Nov; 272(45):28607-14. PubMed ID: 9353326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of natural and artificial substrates for human Cdc25A.
    Rudolph J; Epstein DM; Parker L; Eckstein J
    Anal Biochem; 2001 Feb; 289(1):43-51. PubMed ID: 11161293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and structural studies of specific protein-protein interactions in substrate catalysis by Cdc25B phosphatase.
    Sohn J; Buhrman G; Rudolph J
    Biochemistry; 2007 Jan; 46(3):807-18. PubMed ID: 17223702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase CK2 regulates CDC25B phosphatase activity.
    Theis-Febvre N; Filhol O; Froment C; Cazales M; Cochet C; Monsarrat B; Ducommun B; Baldin V
    Oncogene; 2003 Jan; 22(2):220-32. PubMed ID: 12527891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR.
    Goldstone S; Pavey S; Forrest A; Sinnamon J; Gabrielli B
    Oncogene; 2001 Feb; 20(8):921-32. PubMed ID: 11314027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of Cdc25.
    Rudolph J
    Biochemistry; 2002 Dec; 41(49):14613-23. PubMed ID: 12463761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dual specificity phosphatase Cdc25B, but not the closely related Cdc25C, is capable of inhibiting cellular proliferation in a manner dependent upon its catalytic activity.
    Varmeh-Ziaie S; Manfredi JJ
    J Biol Chem; 2007 Aug; 282(34):24633-41. PubMed ID: 17591782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity.
    Izumi T; Maller JL
    Mol Biol Cell; 1995 Feb; 6(2):215-26. PubMed ID: 7787247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc25B activity is regulated by 14-3-3.
    Forrest A; Gabrielli B
    Oncogene; 2001 Jul; 20(32):4393-401. PubMed ID: 11466620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of binding and catalysis for the Cdc25B phosphatase.
    Sohn J; Rudolph J
    Biophys Chem; 2007 Feb; 125(2-3):549-55. PubMed ID: 17174465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15.
    Sebastian B; Kakizuka A; Hunter T
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3521-4. PubMed ID: 8475101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetic network of hotspot residues between Cdc25B phosphatase and its protein substrate.
    Sohn J; Rudolph J
    J Mol Biol; 2006 Oct; 362(5):1060-71. PubMed ID: 16950393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a C-terminal cdc25 sequence required for promotion of germinal vesicle breakdown.
    Powers EA; Thompson DP; Garner-Hamrick PA; He W; Yem AW; Bannow CA; Staples DJ; Waszak GA; Smith CW; Deibel MR; Fisher C
    Biochem J; 2000 May; 347 Pt 3(Pt 3):653-60. PubMed ID: 10769167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the docking-dependent PLK1 phosphorylation of the CDC25B phosphatase.
    Lobjois V; Froment C; Braud E; Grimal F; Burlet-Schiltz O; Ducommun B; Bouche JP
    Biochem Biophys Res Commun; 2011 Jun; 410(1):87-90. PubMed ID: 21640712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.
    Deshimaru S; Miyake Y; Ohmiya T; Tatsu Y; Endo Y; Yumoto N; Toraya T
    J Biochem; 2002 May; 131(5):705-12. PubMed ID: 11983078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate.
    Sohn J; Parks JM; Buhrman G; Brown P; Kristjánsdóttir K; Safi A; Edelsbrunner H; Yang W; Rudolph J
    Biochemistry; 2005 Dec; 44(50):16563-73. PubMed ID: 16342947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells.
    Sandhu C; Donovan J; Bhattacharya N; Stampfer M; Worland P; Slingerland J
    Oncogene; 2000 Nov; 19(47):5314-23. PubMed ID: 11103932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.