BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11714357)

  • 1. Detection of alpha-dicarbonyl compounds in Maillard reaction systems and in vivo.
    Glomb MA; Tschirnich R
    J Agric Food Chem; 2001 Nov; 49(11):5543-50. PubMed ID: 11714357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of oligosaccharides in nonenzymatic browning by formation of alpha-dicarbonyl compounds via a "peeling off" mechanism.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2000 Dec; 48(12):6219-26. PubMed ID: 11312795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel insights into the maillard catalyzed degradation of maltose.
    Smuda M; Glomb MA
    J Agric Food Chem; 2011 Dec; 59(24):13254-64. PubMed ID: 22122608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. News on the Maillard reaction of oligomeric carbohydrates: a survey.
    Kroh LW; Schulz A
    Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation pathways during Maillard-induced carbohydrate degradation.
    Smuda M; Glomb MA
    J Agric Food Chem; 2013 Oct; 61(43):10198-208. PubMed ID: 23425499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Deoxyglucosone: A New C
    Bruhns P; Kaufmann M; Koch T; Kroh LW
    J Agric Food Chem; 2018 Nov; 66(44):11806-11811. PubMed ID: 30336014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties.
    Shakoor A; Zhang C; Xie J; Yang X
    Food Chem; 2022 Nov; 393():133416. PubMed ID: 35696950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. alpha-Dicarbonyl compounds formed by nonenzymatic browning during the dry heating of caseinate and lactose.
    Ge Pan G; Oliver CM; Melton LD
    J Agric Food Chem; 2006 Sep; 54(18):6852-7. PubMed ID: 16939349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C.
    Hrynets Y; Ndagijimana M; Betti M
    J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of chemical pathways in the maillard reaction by 17O-NMR spectroscopy.
    Robert F; Vera FA; Kervella F; Davidek T; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():63-72. PubMed ID: 16037223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate carbonyl mobility--the key process in the formation of alpha-dicarbonyl intermediates.
    Reihl O; Rothenbacher TM; Lederer MO; Schwack W
    Carbohydr Res; 2004 Jun; 339(9):1609-18. PubMed ID: 15183735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction.
    Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I
    J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of reactive alpha-dicarbonyl compounds generated from the Maillard reactions of L-methionine with reducing sugars via their stable quinoxaline derivatives.
    Pfeifer YV; Kroh LW
    J Agric Food Chem; 2010 Jul; 58(14):8293-9. PubMed ID: 20572669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of the Maillard reaction under physiological conditions.
    Henning C; Glomb MA
    Glycoconj J; 2016 Aug; 33(4):499-512. PubMed ID: 27291759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of methylglyoxal with acrylamide formation in fructose/asparagine Maillard reaction model system.
    Yuan Y; Zhao G; Chen F; Liu J; Wu J; Hu X
    Food Chem; 2008 Jun; 108(3):885-90. PubMed ID: 26065749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of 1-deoxy-D-erythro-hexo-2,3-diulose: a key intermediate in the maillard chemistry of hexoses.
    Voigt M; Glomb MA
    J Agric Food Chem; 2009 Jun; 57(11):4765-70. PubMed ID: 19422225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of 2-methylene-1,3-dicarbonyl compounds. 1,3-dipolar cycloaddition reaction with ethyl diazoacetate.
    Yamauchi M; Yajima M
    Chem Pharm Bull (Tokyo); 2001 Dec; 49(12):1638-9. PubMed ID: 11767088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.