BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11714522)

  • 1. A model that uses the induction phase of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 to quantify cell density in translucent porous media.
    Uesugi SL; Yarwood RR; Selker JS; Bottomley PJ
    J Microbiol Methods; 2001 Dec; 47(3):315-22. PubMed ID: 11714522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real time monitoring of biofilm development under flow conditions in porous media.
    Bozorg A; Gates ID; Sen A
    Biofouling; 2012; 28(9):937-51. PubMed ID: 22963147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release.
    Ripp S; Nivens DE; Werner C; Sayler GS
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):736-41. PubMed ID: 10919336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions.
    Yarwood RR; Rockhold ML; Niemet MR; Selker JS; Bottomley PJ
    Appl Environ Microbiol; 2002 Jul; 68(7):3597-605. PubMed ID: 12089048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.
    Bozorg A; Gates ID; Sen A
    J Microbiol Methods; 2015 Feb; 109():84-92. PubMed ID: 25479429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of bacterial bioluminescence.
    Kelly CJ; Hsiung CJ; Lajoie CA
    Biotechnol Bioeng; 2003 Feb; 81(3):370-8. PubMed ID: 12474260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history.
    Trögl J; Chauhan A; Ripp S; Layton AC; Kuncová G; Sayler GS
    Sensors (Basel); 2012; 12(2):1544-71. PubMed ID: 22438725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid.
    Trögl J; Kuncová G; Kubicová L; Parík P; Hálová J; Demnerová K; Ripp S; Sayler GS
    Folia Microbiol (Praha); 2007; 52(1):3-14. PubMed ID: 17571789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of mono-, di- and tri-chlorophenols to lux marked terrestrial bacteria, Burkholderia species Rasc c2 and Pseudomonas fluorescens.
    Boyd EM; Killham K; Meharg AA
    Chemosphere; 2001 Apr; 43(2):157-66. PubMed ID: 11297395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44.
    Chauhan A; Layton AC; Williams DE; Smartt AE; Ripp S; Karpinets TV; Brown SD; Sayler GS
    J Bacteriol; 2011 Sep; 193(18):5009-10. PubMed ID: 21742869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and response of a Pseudomonas fuorescens HK44 biosensor.
    Webb OF; Bienkowski PR; Matrubutham U; Evans FA; Heitzer A; Sayler GS
    Biotechnol Bioeng; 1997 Jun; 54(5):491-502. PubMed ID: 18634140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system.
    Unge A; Tombolini R; Molbak L; Jansson JK
    Appl Environ Microbiol; 1999 Feb; 65(2):813-21. PubMed ID: 9925621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.
    Heitzer A; Malachowsky K; Thonnard JE; Bienkowski PR; White DC; Sayler GS
    Appl Environ Microbiol; 1994 May; 60(5):1487-94. PubMed ID: 8017932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: implications for PAH biodegradation in the rhizosphere.
    Kamath R; Schnoor JL; Alvarez PJ
    Environ Sci Technol; 2004 Mar; 38(6):1740-5. PubMed ID: 15074683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of metabolic activity on the transport und deposition of Pseudomonas fluorescens in saturated porous media.
    Jansen S; Vereecken H; Klumpp E
    Water Res; 2010 Feb; 44(4):1288-96. PubMed ID: 20153499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
    Koch B; Worm J; Jensen LE; Højberg O; Nybroe O
    Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bioluminescent derivatives of assimilable organic carbon test bacteria.
    Haddix PL; Shaw NJ; LeChevallier MW
    Appl Environ Microbiol; 2004 Feb; 70(2):850-4. PubMed ID: 14766564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a lux-based procedure to rapidly visualize root colonisation by Pseudomonas fluorescens in the wheat rhizosphere.
    de Weger LA; Kuiper I; van der Bij AJ; Lugtenberg BJ
    Antonie Van Leeuwenhoek; 1997 Nov; 72(4):365-72. PubMed ID: 9442276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A toxicity testing protocol using a bioluminescent reporter bacterium from activated sludge.
    Lajoie CA; Lin SC; Nguyen H; Kelly CJ
    J Microbiol Methods; 2002 Aug; 50(3):273-82. PubMed ID: 12031577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.