These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11714522)

  • 21. Automatic formation of hypotheses on the relationships between structure of naphthalene analogs and bioluminescence response of bioreporter Pseudomonas fluorescens HK44.
    Trögl J; Hálová J; Kuncová G; Pařík P
    Folia Microbiol (Praha); 2010 Sep; 55(5):411-7. PubMed ID: 20941573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Conflict: induction-inhibition of transgene bacteria luminescence in studying expression of lux-genes].
    Lesniak DV; Popova LIu
    Biofizika; 2002; 47(6):1059-63. PubMed ID: 12500568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A tripartite microbial reporter gene system for real-time assays of soil nutrient status.
    Standing D; Meharg AA; Killham K
    FEMS Microbiol Lett; 2003 Mar; 220(1):35-9. PubMed ID: 12644225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioluminescence-based measurement of viability of Pseudomonas aeruginosa ATCC 9027 harbouring plasmid-based lux genes under the control of constitutive promoters.
    Shah N; Naseby DC
    J Appl Microbiol; 2014 Nov; 117(5):1373-87. PubMed ID: 25176324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomass relationship to growth and phosphate uptake of Pseudomonas fluorescens, Escherichia coli and Acinetobacter radioresistens in mixed liquor medium.
    Momba MN; Cloete TE
    J Ind Microbiol; 1996 Jun; 16(6):364-9. PubMed ID: 8987495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-invasive determination of plant-associated bacteria in the phyllosphere of plants.
    Gau AE; Dietrich C; Kloppstech K
    Environ Microbiol; 2002 Nov; 4(11):744-52. PubMed ID: 12460282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Dependence of extracellular proteases synthesis on the growth phase of Pseudomonas fluorescens].
    Mikel'saar PCh; Vilu RO; Lakht TI
    Mikrobiologiia; 1982; 51(2):212-5. PubMed ID: 6806575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media.
    Gentile GJ; Fidalgo de Cortalezzi MM
    J Contam Hydrol; 2016 Aug; 191():66-75. PubMed ID: 27258326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens.
    Rieck VT; Palumbo SA; Witter LD
    J Gen Microbiol; 1973 Jan; 74(1):1-8. PubMed ID: 4632977
    [No Abstract]   [Full Text] [Related]  

  • 30. An automated technique for most-probable-number (MPN) analysis of densities of phagotrophic protists with lux AB labelled bacteria as growth medium.
    Ekelund F; Christensen S; Rønn R; Buhl E; Jacobsen CS
    J Microbiol Methods; 1999 Nov; 38(3):177-82. PubMed ID: 10541430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of starvation on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2007 Mar; 114(3):307-15. PubMed ID: 17169452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Measurement and Correlation of Cell Density and Light Emission of Bioluminescent Bacteria.
    Brodl E; Niederhauser J; Macheroux P
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioluminescence of Pseudomonas fluorescens HK44 in the course of encapsulation into silica gel. Effect of methanol.
    Trögl J; Kuncová G; Kuráň P
    Folia Microbiol (Praha); 2010 Nov; 55(6):569-75. PubMed ID: 21253900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.
    Hack N; Reinwand C; Abbt-Braun G; Horn H; Frimmel FH
    J Contam Hydrol; 2015 Dec; 183():40-54. PubMed ID: 26529301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualisation study on Pseudomonas migulae AN-1 transport in saturated porous media.
    Qu D; Ren H; Zhou R; Zhao Y
    Water Res; 2017 Oct; 122():329-336. PubMed ID: 28618357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential bioavailability of copper complexes to bioluminescent Pseudomonas fluorescens reporter strains.
    Nybroe O; Brandt KK; Ibrahim YM; Tom-Petersen A; Holm PE
    Environ Toxicol Chem; 2008 Nov; 27(11):2246-52. PubMed ID: 18532872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of a lux-marked rhizobacterium as a biosensor to assess changes in rhizosphere C flow due to pollutant stress.
    Porteous F; Killham K; Meharg A
    Chemosphere; 2000 Nov; 41(10):1549-54. PubMed ID: 11057680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.