BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11714555)

  • 1. Mechanical properties of callus in human tibial fractures: a preliminary investigation.
    Moorcroft CI; Ogrodnik PJ; Thomas PB; Wade RH
    Clin Biomech (Bristol, Avon); 2001 Nov; 16(9):776-82. PubMed ID: 11714555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load transmission through the callus site with external fixation systems: theoretical and experimental analysis.
    Prat J; Juan JA; Vera P; Hoyos JV; Dejoz R; Peris JL; Sánchez-Lacuesta J; Comín M
    J Biomech; 1994 Apr; 27(4):469-78. PubMed ID: 8188727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture healing of the sheep tibia treated using a unilateral external fixator. Comparison of static and dynamic fixation.
    Hente R; Cordey J; Rahn BA; Maghsudi M; von Gumppenberg S; Perren SM
    Injury; 1999; 30 Suppl 1():A44-51. PubMed ID: 10645369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical influences on tibial fracture healing.
    Kenwright J; Gardner T
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S179-90. PubMed ID: 9917638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis.
    Lill CA; Hesseln J; Schlegel U; Eckhardt C; Goldhahn J; Schneider E
    J Orthop Res; 2003 Sep; 21(5):836-42. PubMed ID: 12919871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness, strength and healing assessment in different bone fractures--a simple mathematical model.
    Simpson AH; Gardner TN; Evans M; Kenwright J
    Injury; 2000 Dec; 31(10):777-81. PubMed ID: 11154747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of active shear or compressive motion on fracture-healing.
    Park SH; O'Connor K; McKellop H; Sarmiento A
    J Bone Joint Surg Am; 1998 Jun; 80(6):868-78. PubMed ID: 9655105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing Adjustable Stiffness External Fixator for Mechanically Stimulated Healing of Tibial Fractures.
    Li H; Li D; Qiao F; Tang L; Han Q
    Biomed Res Int; 2021; 2021():8539416. PubMed ID: 34977247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tibial external fixation, weight bearing, and fracture movement.
    Kershaw CJ; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1993 Aug; (293):28-36. PubMed ID: 8339493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiffness measurement of the neocallus with the Fraktometer FM 100.
    Schmickal T; von Recum J; Wentzensen A
    Arch Orthop Trauma Surg; 2005 Dec; 125(10):653-9. PubMed ID: 16189688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring multi-dimensional, time-dependent mechanical properties of a human tibial fracture using an automated system.
    Ogrodnik PJ; Moorcroft CI; Thomas PB
    Proc Inst Mech Eng H; 2007 Aug; 221(6):641-52. PubMed ID: 17937203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of fixator frame stiffness in the control of fracture healing. An experimental study.
    Goodship AE; Watkins PE; Rigby HS; Kenwright J
    J Biomech; 1993 Sep; 26(9):1027-35. PubMed ID: 8408085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The initial phase of fracture healing is specifically sensitive to mechanical conditions.
    Klein P; Schell H; Streitparth F; Heller M; Kassi JP; Kandziora F; Bragulla H; Haas NP; Duda GN
    J Orthop Res; 2003 Jul; 21(4):662-9. PubMed ID: 12798066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo measurement of bending stiffness in fracture healing.
    Hente R; Cordey J; Perren SM
    Biomed Eng Online; 2003 Mar; 2():8. PubMed ID: 14599296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of external fixation to definitive intramedullary nailing in experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    J Invest Surg; 2010 Jun; 23(3):142-8. PubMed ID: 20590385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concepts of fracture union, delayed union, and nonunion.
    Marsh D
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S22-30. PubMed ID: 9917623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression.
    Aro HT; Chao EY
    Clin Orthop Relat Res; 1993 Aug; (293):8-17. PubMed ID: 8339513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.