These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. Rabkin-Aikawa E; Farber M; Aikawa M; Schoen FJ J Heart Valve Dis; 2004 Sep; 13(5):841-7. PubMed ID: 15473488 [TBL] [Abstract][Full Text] [Related]
4. CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Barth PJ; Köster H; Moosdorf R Pathol Res Pract; 2005; 201(4):301-4. PubMed ID: 15991836 [TBL] [Abstract][Full Text] [Related]
5. The pathomechanism of human myxomatous valvular degeneration at the mechanical and cellular level. Hu C; Wang Q; Xue H; Hong H; Shi J; Dong N; Zhang M Rev Cardiovasc Med; 2021 Jun; 22(2):513-519. PubMed ID: 34258920 [TBL] [Abstract][Full Text] [Related]
6. Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves. Lacerda CM; Kisiday J; Johnson B; Orton EC Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1983-90. PubMed ID: 22345569 [TBL] [Abstract][Full Text] [Related]
7. Activation of the Interleukin-33/ST2 Pathway Exerts Deleterious Effects in Myxomatous Mitral Valve Disease. Garcia-Pena A; Ibarrola J; Navarro A; Sadaba A; Tiraplegui C; Garaikoetxea M; Arrieta V; Matilla L; Fernández-Celis A; Sadaba R; Alvarez V; Gainza A; Jover E; López-Andrés N Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33669101 [TBL] [Abstract][Full Text] [Related]
8. Role of matrix metalloproteinases and their tissue inhibitor of metalloproteinases in myxomatous change of cardiac floppy valves. Togashi M; Tamura K; Nitta T; Ishizaki M; Sugisaki Y; Fukuda Y Pathol Int; 2007 May; 57(5):251-9. PubMed ID: 17493172 [TBL] [Abstract][Full Text] [Related]
9. Cardiac transgenic matrix metalloproteinase-2 expression induces myxomatous valve degeneration: a potential model of mitral valve prolapse disease. Mahimkar R; Nguyen A; Mann M; Yeh CC; Zhu BQ; Karliner JS; Lovett DH Cardiovasc Pathol; 2009; 18(5):253-61. PubMed ID: 18835790 [TBL] [Abstract][Full Text] [Related]
10. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers. Geirsson A; Singh M; Ali R; Abbas H; Li W; Sanchez JA; Hashim S; Tellides G Circulation; 2012 Sep; 126(11 Suppl 1):S189-97. PubMed ID: 22965982 [TBL] [Abstract][Full Text] [Related]
11. Tryptophan hydroxylase 1 expression is increased in phenotype-altered canine and human degenerative myxomatous mitral valves. Disatian S; Lacerda C; Orton EC J Heart Valve Dis; 2010 Jan; 19(1):71-8. PubMed ID: 20329492 [TBL] [Abstract][Full Text] [Related]
12. Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. Grande-Allen KJ; Griffin BP; Ratliff NB; Cosgrove DM; Vesely I J Am Coll Cardiol; 2003 Jul; 42(2):271-7. PubMed ID: 12875763 [TBL] [Abstract][Full Text] [Related]
13. Infectious agents is a risk factor for myxomatous mitral valve degeneration: A case control study. Tiveron MG; Pomerantzeff PMA; de Lourdes Higuchi M; Reis MM; de Jesus Pereira J; Kawakami JT; Ikegami RN; de Almeida Brandao CM; Jatene FB BMC Infect Dis; 2017 Apr; 17(1):297. PubMed ID: 28431520 [TBL] [Abstract][Full Text] [Related]
14. Tumorous deformity of mitral valve leaflet after chordal rupture in a child. Tamura K; Sugisaki Y; Ogawa S; Yamauchi H; Okada R Pathol Int; 2003 Jan; 53(1):51-7. PubMed ID: 12558871 [TBL] [Abstract][Full Text] [Related]
15. Profile and localization of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in human heart valves. Dreger SA; Taylor PM; Allen SP; Yacoub MH J Heart Valve Dis; 2002 Nov; 11(6):875-80; discussion 880. PubMed ID: 12479292 [TBL] [Abstract][Full Text] [Related]
16. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. Caira FC; Stock SR; Gleason TG; McGee EC; Huang J; Bonow RO; Spelsberg TC; McCarthy PM; Rahimtoola SH; Rajamannan NM J Am Coll Cardiol; 2006 Apr; 47(8):1707-12. PubMed ID: 16631011 [TBL] [Abstract][Full Text] [Related]
17. Cellular and Extracellular Matrix Basis for Heterogeneity in Mitral Annular Contraction. Stephens EH; Fahrenholtz MM; Connell PS; Timek TA; Daughters GT; Kuo JJ; Patton AM; Ingels NB; Miller DC; Grande-Allen KJ Cardiovasc Eng Technol; 2015 Jun; 6(2):151-9. PubMed ID: 26195991 [TBL] [Abstract][Full Text] [Related]
18. Distribution of myofibroblasts, smooth muscle-like cells, macrophages, and mast cells in mitral valve leaflets of dogs with myxomatous mitral valve disease. Han RI; Black A; Culshaw GJ; French AT; Else RW; Corcoran BM Am J Vet Res; 2008 Jun; 69(6):763-9. PubMed ID: 18518656 [TBL] [Abstract][Full Text] [Related]
19. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-β mechanisms. Oyama MA; Elliott C; Loughran KA; Kossar AP; Castillero E; Levy RJ; Ferrari G Cardiovasc Pathol; 2020; 46():107196. PubMed ID: 32006823 [TBL] [Abstract][Full Text] [Related]
20. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. Rabkin E; Hoerstrup SP; Aikawa M; Mayer JE; Schoen FJ J Heart Valve Dis; 2002 May; 11(3):308-14; discussion 314. PubMed ID: 12056720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]