These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
693 related articles for article (PubMed ID: 11714929)
1. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity. Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929 [TBL] [Abstract][Full Text] [Related]
2. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Xu Y; Beckett D Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659 [TBL] [Abstract][Full Text] [Related]
3. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Beckett D; Kovaleva E; Schatz PJ Protein Sci; 1999 Apr; 8(4):921-9. PubMed ID: 10211839 [TBL] [Abstract][Full Text] [Related]
4. Competing protein:protein interactions are proposed to control the biological switch of the E coli biotin repressor. Weaver LH; Kwon K; Beckett D; Matthews BW Protein Sci; 2001 Dec; 10(12):2618-22. PubMed ID: 11714930 [TBL] [Abstract][Full Text] [Related]
5. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution. Wood ZA; Weaver LH; Brown PH; Beckett D; Matthews BW J Mol Biol; 2006 Mar; 357(2):509-23. PubMed ID: 16438984 [TBL] [Abstract][Full Text] [Related]
6. Structural insights into BirA from Haemophilus influenzae, a bifunctional protein as a biotin protein ligase and a transcriptional repressor. Jeong KH; Son SB; Ko JH; Lee M; Lee JY Biochem Biophys Res Commun; 2024 Nov; 733():150601. PubMed ID: 39213703 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Wilson KP; Shewchuk LM; Brennan RG; Otsuka AJ; Matthews BW Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9257-61. PubMed ID: 1409631 [TBL] [Abstract][Full Text] [Related]
8. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase. Chakravartty V; Cronan JE J Biol Chem; 2013 Dec; 288(50):36029-39. PubMed ID: 24189073 [TBL] [Abstract][Full Text] [Related]
9. Diversity in functional organization of class I and class II biotin protein ligase. Purushothaman S; Annamalai K; Tyagi AK; Surolia A PLoS One; 2011 Mar; 6(3):e16850. PubMed ID: 21390227 [TBL] [Abstract][Full Text] [Related]
10. Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988 [TBL] [Abstract][Full Text] [Related]
11. A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli. Smith PA; Tripp BC; DiBlasio-Smith EA; Lu Z; LaVallie ER; McCoy JM Nucleic Acids Res; 1998 Mar; 26(6):1414-20. PubMed ID: 9490786 [TBL] [Abstract][Full Text] [Related]
12. Function of a conserved sequence motif in biotin holoenzyme synthetases. Kwon K; Beckett D Protein Sci; 2000 Aug; 9(8):1530-9. PubMed ID: 10975574 [TBL] [Abstract][Full Text] [Related]
13. Biotinylation in the hyperthermophile Aquifex aeolicus. Clarke DJ; Coulson J; Baillie R; Campopiano DJ Eur J Biochem; 2003 Mar; 270(6):1277-87. PubMed ID: 12631286 [TBL] [Abstract][Full Text] [Related]
14. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration. Gupta V; Gupta RK; Khare G; Salunke DM; Surolia A; Tyagi AK PLoS One; 2010 Feb; 5(2):e9222. PubMed ID: 20169168 [TBL] [Abstract][Full Text] [Related]
15. Interchangeable enzyme modules. Functional replacement of the essential linker of the biotinylated subunit of acetyl-CoA carboxylase with a linker from the lipoylated subunit of pyruvate dehydrogenase. Cronan JE J Biol Chem; 2002 Jun; 277(25):22520-7. PubMed ID: 11956202 [TBL] [Abstract][Full Text] [Related]
16. Ligand-linked structural changes in the Escherichia coli biotin repressor: the significance of surface loops for binding and allostery. Streaker ED; Beckett D J Mol Biol; 1999 Sep; 292(3):619-32. PubMed ID: 10497026 [TBL] [Abstract][Full Text] [Related]
17. The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. Li SJ; Cronan JE J Biol Chem; 1992 Jan; 267(2):855-63. PubMed ID: 1370469 [TBL] [Abstract][Full Text] [Related]
18. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment. Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544 [TBL] [Abstract][Full Text] [Related]
19. The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the "thumb" structure id essential and that the domain functions as a dimer. Cronan JE J Biol Chem; 2001 Oct; 276(40):37355-64. PubMed ID: 11495922 [TBL] [Abstract][Full Text] [Related]
20. Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis. Xu Y; Nenortas E; Beckett D Biochemistry; 1995 Dec; 34(51):16624-31. PubMed ID: 8527435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]