These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 11715030)
1. High-speed mass transit for poxviruses on microtubules. Moss B; Ward BM Nat Cell Biol; 2001 Nov; 3(11):E245-6. PubMed ID: 11715030 [No Abstract] [Full Text] [Related]
2. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Rietdorf J; Ploubidou A; Reckmann I; Holmström A; Frischknecht F; Zettl M; Zimmermann T; Way M Nat Cell Biol; 2001 Nov; 3(11):992-1000. PubMed ID: 11715020 [TBL] [Abstract][Full Text] [Related]
3. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Newsome TP; Scaplehorn N; Way M Science; 2004 Oct; 306(5693):124-9. PubMed ID: 15297625 [TBL] [Abstract][Full Text] [Related]
4. Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. Ward BM; Moss B J Virol; 2004 Mar; 78(5):2486-93. PubMed ID: 14963148 [TBL] [Abstract][Full Text] [Related]
5. Virology. Src launches vaccinia. Hall A Science; 2004 Oct; 306(5693):65-7. PubMed ID: 15459376 [No Abstract] [Full Text] [Related]
6. Kinesin-1 plays multiple roles during the vaccinia virus life cycle. Schepis A; Stauber T; Krijnse Locker J Cell Microbiol; 2007 Aug; 9(8):1960-73. PubMed ID: 17394562 [TBL] [Abstract][Full Text] [Related]
7. Processive movement of single kinesins on crowded microtubules visualized using quantum dots. Seitz A; Surrey T EMBO J; 2006 Jan; 25(2):267-77. PubMed ID: 16407972 [TBL] [Abstract][Full Text] [Related]
8. Trafficking mechanism of West Nile (Sarafend) virus structural proteins. Chu JJ; Ng ML J Med Virol; 2002 May; 67(1):127-36. PubMed ID: 11920827 [TBL] [Abstract][Full Text] [Related]
9. The longest micron; transporting poxviruses out of the cell. Ward BM Cell Microbiol; 2005 Nov; 7(11):1531-8. PubMed ID: 16207240 [TBL] [Abstract][Full Text] [Related]
11. Dictyostelium, a model organism for microtubule-based transport. Koonce MP Protist; 2000 May; 151(1):17-25. PubMed ID: 10896130 [No Abstract] [Full Text] [Related]
12. Tau proteins bind to kinesin and modulate its activation by microtubules. Jancsik V; Filliol D; Rendon A Neurobiology (Bp); 1996; 4(4):417-29. PubMed ID: 9200133 [TBL] [Abstract][Full Text] [Related]
13. Visualization of intracellular transport of vesicular stomatitis virus nucleocapsids in living cells. Das SC; Nayak D; Zhou Y; Pattnaik AK J Virol; 2006 Jul; 80(13):6368-77. PubMed ID: 16775325 [TBL] [Abstract][Full Text] [Related]
14. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Carson JH; Worboys K; Ainger K; Barbarese E Cell Motil Cytoskeleton; 1997; 38(4):318-28. PubMed ID: 9415374 [TBL] [Abstract][Full Text] [Related]
15. Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Mossman K; Upton C; Buller RM; McFadden G Virology; 1995 Apr; 208(2):762-9. PubMed ID: 7747448 [TBL] [Abstract][Full Text] [Related]
16. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. Seog DH; Lee DH; Lee SK J Korean Med Sci; 2004 Feb; 19(1):1-7. PubMed ID: 14966333 [TBL] [Abstract][Full Text] [Related]
18. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. Nakata T; Hirokawa N J Cell Biol; 2003 Sep; 162(6):1045-55. PubMed ID: 12975348 [TBL] [Abstract][Full Text] [Related]
19. The movement of kinesin along microtubules. Howard J Annu Rev Physiol; 1996; 58():703-29. PubMed ID: 8815816 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the roles of kinesin and dynein motors in microtubule-based transport in the Caenorhabditis elegans nervous system. Signor D; Rose LS; Scholey JM Methods; 2000 Dec; 22(4):317-25. PubMed ID: 11133238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]