These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11715032)

  • 1. The expanding world of oxidative protein folding.
    Kadokura H; Beckwith J
    Nat Cell Biol; 2001 Nov; 3(11):E247-9. PubMed ID: 11715032
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochemical basis of oxidative protein folding in the endoplasmic reticulum.
    Tu BP; Ho-Schleyer SC; Travers KJ; Weissman JS
    Science; 2000 Nov; 290(5496):1571-4. PubMed ID: 11090354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation, isomerisation and reduction of disulphide bonds during protein quality control in the endoplasmic reticulum.
    Fassio A; Sitia R
    Histochem Cell Biol; 2002 Feb; 117(2):151-7. PubMed ID: 11935291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum.
    Frand AR; Kaiser CA
    Mol Cell; 1999 Oct; 4(4):469-77. PubMed ID: 10549279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hut1 proteins identified in Saccharomyces cerevisiae and Schizosaccharomyces pombe are functional homologues involved in the protein-folding process at the endoplasmic reticulum.
    Nakanishi H; Nakayama K; Yokota A; Tachikawa H; Takahashi N; Jigami Y
    Yeast; 2001 Apr; 18(6):543-54. PubMed ID: 11284010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum.
    Pollard MG; Travers KJ; Weissman JS
    Mol Cell; 1998 Jan; 1(2):171-82. PubMed ID: 9659914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two conserved cysteine triads in human Ero1alpha cooperate for efficient disulfide bond formation in the endoplasmic reticulum.
    Bertoli G; Simmen T; Anelli T; Molteni SN; Fesce R; Sitia R
    J Biol Chem; 2004 Jul; 279(29):30047-52. PubMed ID: 15136577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balanced Ero1 activation and inactivation establishes ER redox homeostasis.
    Kim S; Sideris DP; Sevier CS; Kaiser CA
    J Cell Biol; 2012 Mar; 196(6):713-25. PubMed ID: 22412017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.
    Frand AR; Kaiser CA
    Mol Biol Cell; 2000 Sep; 11(9):2833-43. PubMed ID: 10982384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein folding: a missing redox link in the endoplasmic reticulum.
    Freedman RB; Dunn AD; Ruddock LW
    Curr Biol; 1998 Jun; 8(13):R468-70. PubMed ID: 9651676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1.
    Niu Y; Zhang L; Yu J; Wang CC; Wang L
    J Biol Chem; 2016 Apr; 291(15):8283-94. PubMed ID: 26846856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfides out of thin air.
    Collet JF; Bardwell JC
    Nat Struct Biol; 2002 Jan; 9(1):2-3. PubMed ID: 11753423
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxidative activity of yeast Ero1p on protein disulfide isomerase and related oxidoreductases of the endoplasmic reticulum.
    Vitu E; Kim S; Sevier CS; Lutzky O; Heldman N; Bentzur M; Unger T; Yona M; Kaiser CA; Fass D
    J Biol Chem; 2010 Jun; 285(24):18155-65. PubMed ID: 20348090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional in vitro analysis of the ERO1 protein and protein-disulfide isomerase pathway.
    Araki K; Nagata K
    J Biol Chem; 2011 Sep; 286(37):32705-12. PubMed ID: 21757736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the Mitochondrial Intermembrane Space Disulfide Relay Represents a Critical Step in Eukaryotic Evolution.
    Backes S; Garg SG; Becker L; Peleh V; Glockshuber R; Gould SB; Herrmann JM
    Mol Biol Evol; 2019 Apr; 36(4):742-756. PubMed ID: 30668797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation.
    Sevier CS; Cuozzo JW; Vala A; Aslund F; Kaiser CA
    Nat Cell Biol; 2001 Oct; 3(10):874-82. PubMed ID: 11584268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple ways to make disulfides.
    Bulleid NJ; Ellgaard L
    Trends Biochem Sci; 2011 Sep; 36(9):485-92. PubMed ID: 21778060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways of disulfide bond formation in Escherichia coli.
    Messens J; Collet JF
    Int J Biochem Cell Biol; 2006; 38(7):1050-62. PubMed ID: 16446111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells.
    Molinari M; Helenius A
    Nature; 1999 Nov; 402(6757):90-3. PubMed ID: 10573423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.
    Kulp MS; Frickel EM; Ellgaard L; Weissman JS
    J Biol Chem; 2006 Jan; 281(2):876-84. PubMed ID: 16368681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.