BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 11715344)

  • 21. Interfacial interactions of pectin with bovine serum albumin studied by quartz crystal microbalance with dissipation monitoring: effect of ionic strength.
    Wang X; Ruengruglikit C; Wang YW; Huang Q
    J Agric Food Chem; 2007 Dec; 55(25):10425-31. PubMed ID: 18031003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular structural differences between low methoxy pectins induced by pectin methyl esterase II: effects on texture, release and perception of aroma in gels of similar modulus of elasticity.
    Kim Y; Kim YS; Yoo SH; Kim KO
    Food Chem; 2014 Feb; 145():950-5. PubMed ID: 24128568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate.
    Pallandre S; Decker EA; McClements DJ
    J Food Sci; 2007 Nov; 72(9):E518-24. PubMed ID: 18034721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions and compatibility of ribuloso-1,5-bisphosphate carboxylase/oxygenase from alfalfa with pectin in aqueous medium.
    Antonov YUA ; Soshinsky AA
    Int J Biol Macromol; 2000 Jul; 27(4):279-85. PubMed ID: 10921854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pectin as a rheology modifier: Origin, structure, commercial production and rheology.
    Chan SY; Choo WS; Young DJ; Loh XJ
    Carbohydr Polym; 2017 Apr; 161():118-139. PubMed ID: 28189220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic compatibility of proteins in aqueous media. Part 2. The effect of some physicochemical factors on thermodynamic compatibility of casein and soybean globulin fraction.
    Polyakov VI; Popello IA; Grinberg VYa ; Tolstoguzov VB
    Nahrung; 1985; 29(4):323-33. PubMed ID: 4040610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and Characterization of Zein Composite Particles Coated by Caseinate-Pectin Electrostatic Complexes with Improved Structural Stability in Acidic Aqueous Environments.
    Zhang Y; Wang B; Wu Y; Gao B; Yu LL
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31373330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gelling properties of lysine-amidated citrus pectins: The key role of pH in both amidation and gelation.
    Wang J; Zhao C; Zhao S; Lu X; Ma M; Zheng J
    Carbohydr Polym; 2023 Oct; 317():121087. PubMed ID: 37364957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of sodium caseinate, maltodextrin, pectin and their Maillard conjugate on the stability, in vitro release, anti-oxidant property and cell viability of eugenol-olive oil nanoemulsions.
    Nagaraju PG; P S; Dubey T; Chinnathambi S; C G PP; Rao PJ
    Int J Biol Macromol; 2021 Jul; 183():158-170. PubMed ID: 33901559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of pectin structure on the interaction with bile acids under in vitro conditions.
    Dongowski G
    Z Lebensm Unters Forsch; 1995 Oct; 201(4):390-8. PubMed ID: 8525707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physico-chemical state influences in vitro release profile of curcumin from pectin beads.
    Nguyen AT; Winckler P; Loison P; Wache Y; Chambin O
    Colloids Surf B Biointerfaces; 2014 Sep; 121():290-8. PubMed ID: 25009104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural mechanism of complex assemblies: characterisation of beta-lactoglobulin and pectin interactions.
    Xu AY; Melton LD; Jameson GB; Williams MA; McGillivray DJ
    Soft Matter; 2015 Sep; 11(34):6790-9. PubMed ID: 26223829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct measurements of interfacial interactions between pectin and kappa-casein and implications for the stabilisation of calcium-free casein micelle mimics.
    Cucheval A; Al-Ghobashy MA; Hemar Y; Otter D; Williams MA
    J Colloid Interface Sci; 2009 Oct; 338(2):450-62. PubMed ID: 19628212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Action pattern of Valencia orange PME de-esterification of high methoxyl pectin and characterization of modified pectins.
    Kim Y; Teng Q; Wicker L
    Carbohydr Res; 2005 Dec; 340(17):2620-9. PubMed ID: 16216228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Casein/pectin nanocomplexes as potential oral delivery vehicles.
    Luo Y; Pan K; Zhong Q
    Int J Pharm; 2015; 486(1-2):59-68. PubMed ID: 25800678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial structure and composition of polysaccharide-protein complexes from small angle neutron scattering.
    Schmidt I; Cousin F; Huchon C; Boué F; Axelos MA
    Biomacromolecules; 2009 Jun; 10(6):1346-57. PubMed ID: 19425547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstructure and kinetic rheological behavior of amidated and nonamidated LM pectin gels.
    Löfgren C; Guillotin S; Hermansson AM
    Biomacromolecules; 2006 Jan; 7(1):114-21. PubMed ID: 16398505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides.
    Asker D; Weiss J; McClements DJ
    J Agric Food Chem; 2011 Feb; 59(3):1041-9. PubMed ID: 21222480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of calcium, pH, and blockiness on kinetic rheological behavior and microstructure of HM pectin gels.
    Löfgren C; Guillotin S; Evenbratt H; Schols H; Hermansson AM
    Biomacromolecules; 2005; 6(2):646-52. PubMed ID: 15762625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.