These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11715352)
1. Substitution of sugar cane bagasse in the chicken diet and immune response. Hegazy RA; el-Faramawy AA Nahrung; 2001 Oct; 45(5):364-7. PubMed ID: 11715352 [TBL] [Abstract][Full Text] [Related]
2. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast]. Zhang HR; Zeng JZ; He CX; Fang H; Cai AH Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related]
4. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations. Prior BA; Day DF Appl Biochem Biotechnol; 2008 Mar; 146(1-3):151-64. PubMed ID: 18421595 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of inert and organic carriers for Verticillium lecanii spore production in solid-state fermentation. Xu X; Yu Y; Shi Y Biotechnol Lett; 2011 Apr; 33(4):763-8. PubMed ID: 21170570 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Trejo-Hernández MR; Ortiz A; Okoh AI; Morales D; Quintero R Chemosphere; 2007 Jun; 68(5):848-55. PubMed ID: 17395244 [TBL] [Abstract][Full Text] [Related]
7. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591 [TBL] [Abstract][Full Text] [Related]
8. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863 [TBL] [Abstract][Full Text] [Related]
9. Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. Peng F; Ren JL; Xu F; Bian J; Peng P; Sun RC J Agric Food Chem; 2010 Feb; 58(3):1768-76. PubMed ID: 20014776 [TBL] [Abstract][Full Text] [Related]
10. Effect of nutritional factors on cellulase enzyme and microbial protein production by Aspergillus terreus and its evaluation. Garg SK; Neelakantan S Biotechnol Bioeng; 1982 Jan; 24(1):109-25. PubMed ID: 18546104 [TBL] [Abstract][Full Text] [Related]
11. Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse. Herrera-Herrera JA; Pérez-Avalos O; Salgado LM; Ponce-Noyola T Arch Microbiol; 2009 Oct; 191(10):745-50. PubMed ID: 19701743 [TBL] [Abstract][Full Text] [Related]
12. [Changes in the protein fractions of the blood serum of hens vaccinated against pasteurollosis]. Zhokovski N; Ignatov M Vet Med Nauki; 1973; 10(2):75-81. PubMed ID: 4802925 [No Abstract] [Full Text] [Related]
13. [Comparison between quantitative determinations of blood protein fractions of clinically healthy cattle using cellulose acetate film and micro-agar gel electrophoresis]. Blauärmel H Arch Exp Veterinarmed; 1978; 32(4):525-30. PubMed ID: 727867 [TBL] [Abstract][Full Text] [Related]
14. New process for fungal delignification of sugar-cane bagasse and simultaneous production of laccase in a vapor phase bioreactor. Meza JC; Sigoillot JC; Lomascolo A; Navarro D; Auria R J Agric Food Chem; 2006 May; 54(11):3852-8. PubMed ID: 16719506 [TBL] [Abstract][Full Text] [Related]
15. Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate. Silva SS; Ribeiro JD; Felipe MG; Vitolo M Appl Biochem Biotechnol; 1997; 63-65():557-64. PubMed ID: 18576110 [TBL] [Abstract][Full Text] [Related]
16. Production of SCP and cellulase by Aspergillus terreus from bagasse substrate. Garg SK; Neelakantan S Biotechnol Bioeng; 1982 Nov; 24(11):2407-17. PubMed ID: 18546213 [TBL] [Abstract][Full Text] [Related]
17. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. Keown DM; Favas G; Hayashi J; Li CZ Bioresour Technol; 2005 Sep; 96(14):1570-7. PubMed ID: 15978989 [TBL] [Abstract][Full Text] [Related]
18. Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure. Gámez S; Ramírez JA; Garrote G; Vázquez M J Agric Food Chem; 2004 Jun; 52(13):4172-7. PubMed ID: 15212465 [TBL] [Abstract][Full Text] [Related]
19. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins. Wina E; Muetzel S; Becker K J Appl Microbiol; 2006; 100(1):114-22. PubMed ID: 16405691 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric Acid for bioethanol production. Rocha MV; Rodrigues TH; de Macedo GR; Gonçalves LR Appl Biochem Biotechnol; 2009 May; 155(1-3):407-17. PubMed ID: 19031051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]