BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 11716492)

  • 1. Changes in ribosome function induced by protein kinase associated with ribosomes of Streptomyces collinus producing kirromycin.
    Mikulík K; Suchan P; Bobek J
    Biochem Biophys Res Commun; 2001 Nov; 289(2):434-43. PubMed ID: 11716492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor.
    Mikulík K; Bobek J; Ziková A; Smětáková M; Bezoušková S
    Mol Biosyst; 2011 Mar; 7(3):817-23. PubMed ID: 21152561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase associated with ribosomes phosphorylates ribosomal proteins of Streptomyces collinus.
    Mikulík K; Janda I
    Biochem Biophys Res Commun; 1997 Sep; 238(2):370-6. PubMed ID: 9299515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of ribosomal proteins as a possible control system for protein synthesis. Binding of Met-tRNAf to 40 S ribosomal subunits.
    Bommer UA; Bielka H; Henske A; Kärgel HJ
    Acta Biol Med Ger; 1981; 40(9):1105-10. PubMed ID: 6918182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions.
    Xaplanteri MA; Petropoulos AD; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2005; 33(9):2792-805. PubMed ID: 15897324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine.
    Kouvela EC; Gerbanas GV; Xaplanteri MA; Petropoulos AD; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2007; 35(15):5108-19. PubMed ID: 17652323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome.
    Maguire BA; Beniaminov AD; Ramu H; Mankin AS; Zimmermann RA
    Mol Cell; 2005 Nov; 20(3):427-35. PubMed ID: 16285924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of ribosomal protein L27 in peptidyl transfer.
    Trobro S; Aqvist J
    Biochemistry; 2008 Apr; 47(17):4898-906. PubMed ID: 18393533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells.
    Sattlegger E; Hinnebusch AG
    EMBO J; 2000 Dec; 19(23):6622-33. PubMed ID: 11101534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of ribosomal protein P0 is not essential for ribosome function but can affect translation.
    Rodriguez-Gabriel MA; Remacha M; Ballesta JP
    Biochemistry; 1998 Nov; 37(47):16620-6. PubMed ID: 9843429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3].
    Dubovaia VI; Kolosov PM; Alkalaeva EZ; Frolova LIu; Kiselev LL
    Mol Biol (Mosk); 2006; 40(2):310-6. PubMed ID: 16637272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two nucleotide substitutions in the A-site of yeast 18S rRNA affect translation and differentiate the interaction of ribosomes with aminoglycoside antibiotics.
    Tselika S; Konstantinidis TC; Synetos D
    Biochimie; 2008 Jun; 90(6):908-17. PubMed ID: 18331849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of ribosomal peptidyl transfer revisited.
    Johansson M; Bouakaz E; Lovmar M; Ehrenberg M
    Mol Cell; 2008 Jun; 30(5):589-98. PubMed ID: 18538657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli.
    Hwang J; Inouye M
    Mol Microbiol; 2006 Sep; 61(6):1660-72. PubMed ID: 16930151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing of the tuf1 gene and the phosphorylation pattern of EF-Tu1 during development and differentiation in Streptomyces collinus producing kirromycin.
    Mikulík K; Zhulanova E
    Biochem Biophys Res Commun; 1995 Aug; 213(2):454-61. PubMed ID: 7646499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria.
    Schlünzen F; Zarivach R; Harms J; Bashan A; Tocilj A; Albrecht R; Yonath A; Franceschi F
    Nature; 2001 Oct; 413(6858):814-21. PubMed ID: 11677599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the rplB gene from Streptomyces collinus and its protein product by mass spectrometry.
    Mikulík K; Man P; Halada P
    Biochem Biophys Res Commun; 2001 Aug; 285(5):1344-9. PubMed ID: 11478805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.