BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11716728)

  • 1. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate.
    Wang Y; Nakamura S; Ue M; Balbuena PB
    J Am Chem Soc; 2001 Nov; 123(47):11708-18. PubMed ID: 11716728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?
    Wang Y; Nakamura S; Tasaki K; Balbuena PB
    J Am Chem Soc; 2002 Apr; 124(16):4408-21. PubMed ID: 11960470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Insights on the Formation Mechanism of Innermost Layers of Solid Electrolyte Interphases on Carbon Anodes for Lithium-Ion Batteries.
    Peng Q
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF.
    Bedrov D; Smith GD; van Duin AC
    J Phys Chem A; 2012 Mar; 116(11):2978-85. PubMed ID: 22352952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure sensitivity in the decomposition of ethylene carbonate on Si anodes.
    Rohrer J; Kaghazchi P
    Chemphyschem; 2014 Dec; 15(18):3950-4. PubMed ID: 25251145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic thermodynamics and microkinetics of the reduction mechanism of electrolyte additives to facilitate the formation of solid electrolyte interphases in lithium-ion batteries.
    Liu X; Zhou J; Xu Z; Wang Y
    RSC Adv; 2020 Apr; 10(28):16302-16312. PubMed ID: 35498873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of Ultrathin Ethylene Carbonate Films on Pristine and Lithiated Graphite and Their Interaction with Li.
    Bozorgchenani M; Buchner F; Forster-Tonigold K; Kim J; Groß A; Behm RJ
    Langmuir; 2018 Jul; 34(29):8451-8463. PubMed ID: 29943996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the reductive decomposition of ethylene sulfite: a film-forming electrolyte additive in lithium ion batteries.
    Leggesse EG; Jiang JC
    J Phys Chem A; 2012 Nov; 116(45):11025-33. PubMed ID: 23078373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: a direct ab initio molecular dynamics (AIMD) study.
    Tachikawa H
    Chemphyschem; 2014 Jun; 15(8):1604-10. PubMed ID: 24616076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.
    Tasaki K
    J Phys Chem B; 2005 Feb; 109(7):2920-33. PubMed ID: 16851305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery.
    Ushirogata K; Sodeyama K; Okuno Y; Tateyama Y
    J Am Chem Soc; 2013 Aug; 135(32):11967-74. PubMed ID: 23901789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.
    Cui W; Lansac Y; Lee H; Hong ST; Jang YH
    Phys Chem Chem Phys; 2016 Sep; 18(34):23607-12. PubMed ID: 27506245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.
    Martinez de la Hoz JM; Leung K; Balbuena PB
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13457-65. PubMed ID: 24224826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte.
    Zhuang GV; Xu K; Yang H; Jow TR; Ross PN
    J Phys Chem B; 2005 Sep; 109(37):17567-73. PubMed ID: 16853247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use.
    Xing L; Li W; Wang C; Gu F; Xu M; Tan C; Yi J
    J Phys Chem B; 2009 Dec; 113(52):16596-602. PubMed ID: 19947609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions.
    Jiang B; Ponnuchamy V; Shen Y; Yang X; Yuan K; Vetere V; Mossa S; Skarmoutsos I; Zhang Y; Zheng J
    J Phys Chem Lett; 2016 Sep; 7(18):3554-9. PubMed ID: 27560477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into lithium ion deposition on lithium metal surfaces.
    Angarita-Gomez S; Balbuena PB
    Phys Chem Chem Phys; 2020 Sep; 22(37):21369-21382. PubMed ID: 32940313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6.
    Borodin O; Smith GD
    J Phys Chem B; 2009 Feb; 113(6):1763-76. PubMed ID: 19146427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries.
    Sun Y; Wang Y
    Phys Chem Chem Phys; 2017 Mar; 19(9):6861-6870. PubMed ID: 28220165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of Singlet Oxygen with the Ethylene Group: Implications for Electrolyte Stability in Li-Ion and Li-O
    Mullinax JW; Bauschlicher CW; Lawson JW
    J Phys Chem A; 2021 Apr; 125(14):2876-2884. PubMed ID: 33823112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.