These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11716763)

  • 21. 3,5,3'-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation.
    Castilho RF; Kowaltowski AJ; Vercesi AE
    Arch Biochem Biophys; 1998 Jun; 354(1):151-7. PubMed ID: 9633610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiol modification in H2O2- and thromboxane-induced vaso- and bronchoconstriction in rat perfused lung.
    Atzori L; Olafsdóttir K; Corriga AM; Bannenberg G; Ryrfeldt A; Moldéus P
    J Appl Physiol (1985); 1991 Oct; 71(4):1309-14. PubMed ID: 1757354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents.
    Petronilli V; Costantini P; Scorrano L; Colonna R; Passamonti S; Bernardi P
    J Biol Chem; 1994 Jun; 269(24):16638-42. PubMed ID: 7515881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lysosomal sulphate transport is dependent upon sulphydryl groups.
    Chou HF; Passage M; Jonas AJ
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):713-7. PubMed ID: 9480880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of photoinduced membrane rigidification on the lysosomal permeability to potassium ions.
    Zhong Y; Zhang G; Yang L; Zheng YZ
    Photochem Photobiol; 2000 May; 71(5):627-33. PubMed ID: 10818794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of lysosomal integrity caused by the decrease of proton translocation in methylene blue-mediated photosensitization.
    Yao J; Zhang GJ
    Biochim Biophys Acta; 1996 Oct; 1284(1):35-40. PubMed ID: 8865812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of arachidonic acid on the lysosomal ion permeability and osmotic stability.
    Zhang G; Yi YP; Zhang GJ
    J Bioenerg Biomembr; 2006 Feb; 38(1):75-82. PubMed ID: 16732469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol.
    Liu L; Trimarchi JR; Keefe DL
    Biol Reprod; 1999 Oct; 61(4):1162-9. PubMed ID: 10491658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.
    Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA
    Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distance between thiol groups in the gamma subunit of coupling factor 1 influences the proton permeability of thylakoid membranes.
    Moroney JV; Warncke K; McCarty RE
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):347-59. PubMed ID: 6298195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones.
    Palmeira CM; Wallace KB
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.
    Szewczyk A; Wójcik G; Lobanov NA; Nalecz MJ
    Biochem Biophys Res Commun; 1999 Aug; 262(1):255-8. PubMed ID: 10448101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition.
    Andreu GL; Delgado R; Velho JA; Curti C; Vercesi AE
    Arch Biochem Biophys; 2005 Jul; 439(2):184-93. PubMed ID: 15979560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic changes of red cell membrane thiol groups followed by bimane fluorescent labeling.
    Kosower NS; Kosower EM; Zipser Y; Faltin Z; Shomrat R
    Biochim Biophys Acta; 1981 Feb; 640(3):748-59. PubMed ID: 7213703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thiol oxidation-mediated cell death in Aplysia cultured sensory neurons.
    Chang DJ; Lee SH; Lim CS; Jang DH; Lee CH; Lee YD; Kaang BK
    Brain Res; 2004 May; 1007(1-2):71-7. PubMed ID: 15064137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium ion dependent proton efflux and depolarization from spleen lysosomes.
    Moriyama Y
    Biochem Biophys Res Commun; 1988 Oct; 156(1):211-6. PubMed ID: 2845971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of thiol enzymes in the lysosomal breakdown of native and denatured proteins.
    Huisman W; Bouma JM; Gruber M
    Biochim Biophys Acta; 1973 Jan; 297(1):98-109. PubMed ID: 4348323
    [No Abstract]   [Full Text] [Related]  

  • 39. The protonmotive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase.
    Marin B; Marin-Lanza M; Komor E
    Biochem J; 1981 Aug; 198(2):365-72. PubMed ID: 6275844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes.
    Repnik U; Borg Distefano M; Speth MT; Ng MYW; Progida C; Hoflack B; Gruenberg J; Griffiths G
    J Cell Sci; 2017 Sep; 130(18):3124-3140. PubMed ID: 28754686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.